ОХНМЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Влияние органических добавок на интенсивность линий металлов в эмиссионном спектре капельно-искрового разряда при вводе пробы в электролитный анод

Код статьи
10.31857/S0044450223080170-1
DOI
10.31857/S0044450223080170
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 78 / Номер выпуска 8
Страницы
703-710
Аннотация
Изучено влияние природы и концентрации органических модификаторов среды на интенсивность линий некоторых тяжелых металлов (Ag, Cd, Hg, Pb, Tl, Zn) в спектре капельно-искрового разряда при вводе пробы в электролитный анод. Показано, что добавки 0.1–6 мас. % полярных органических соединений многократно повышают интенсивность линий Pb, Tl и Zn и снижают интенсивность линий Ag. Наибольший эффект – двадцатикратное усиление линий цинка – наблюдали при введении метанола в разбавленные кислоты. Сигнал кадмия нечувствителен к органическим примесям в разбавленных кислотах, но усиливается в концентрированных растворах солей.
Ключевые слова
капельно-искровой разряд микроплазма атомно-эмиссионная спектроскопия электролитный анод органические модификаторы среды тяжелые металлы концентрированные растворы солей.
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Pohl P., Jamroz P., Swiderski K., Dzimitrowicz A., Lesniewicz A. Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emission spectrometry // Trends Anal. Chem. 2017. V. 88. P. 119.
  2. 2. Leng A., Lin Y., Yong L., Zheng C. Progress and application of liquid electrode glow discharge for atomic spectrometry // Chinese J. Anal. Chem. 2020. V. 48. № 9. P. 1131
  3. 3. Pohl P., Greda K., Dzimitrowicz A., Welna M., Szymczycha-Madeja A., Lesniewicz A., Jamroz P. Cold atmospheric plasma-induced chemical vapor generation in trace element analysis by spectrometric methods // Trends Anal. Chem. 2019. V. 113. P. 234.
  4. 4. Jamróz P., Pohl P., Żyrnicki W. An analytical performance of atmospheric pressure glow discharge generated in contact with flowing small size liquid cathode // J. Anal. At. Spectrom. 2012. V. 27. № 6. P. 1032.
  5. 5. Greda K., Jamroz P., Dzimitrowicz A., Pohl P. Direct elemental analysis of honeys by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode // J. Anal. At. Spectrom. 2014. V. 30. № 1. P. 154.
  6. 6. Gorska M., Pohl P. Simplified and rapid determination of Ca, K, Mg, and Na in fruit juices by flowing liquid cathode atmospheric glow discharge optical emission spectrometry // J. Anal. At. Spectrom. 2021. V. 36. № 7. P. 1455.
  7. 7. Gorska M., Pohl P. Application of atmospheric pressure glow discharge generated in contact with liquids for determination of chloride and bromide in water and juice samples by optical emission spectrometry // Talanta. 2022. V. 237. Article 122921.
  8. 8. Shekhar R. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium // Talanta. 2012. V. 93. P. 32.
  9. 9. Gorska M., Pohl P. Comparison of the performance of atmospheric pressure glow discharges operated between a flowing liquid cathode and either a pin-type anode or a helium jet anode for the Ga and In determination by the optical emission spectrometry // Talanta. 2021. V. 226. Article 122155.
  10. 10. Qian L., Lei Z., Peng X., Yang G., Wang Z. Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry // Anal. Chim. Acta. 2021. V. 1162. Article 338495.
  11. 11. Gręda K., Jamróz P., Pohl P. The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of non-ionic surfactants to electrolyte solutions // Talanta. 2013. V. 108. P. 74.
  12. 12. Yu J., Zhang Z., Lu Q., Sun D., Zhu S., Zhang X., Wang X., Yang W. High-sensitivity determination of K, Ca, Na, and Mg in salt mines samples by atomic emission spectrometry with a miniaturized liquid cathode glow discharge // J Anal. Methods: Chem. 2017. V. 2017. P. 1.
  13. 13. Shekhar R., Madhavi K., Meeravali N., Kumar S. Determination of thallium at trace levels by electrolyte cathode discharge atomic emission spectrometry with improved sensitivity // Anal. Methods. 2014. V. 6. № 3. P. 732.
  14. 14. Ягов В.В., Гецина М.Л. Влияние состава фонового электролита на интенсивность линий металлов в электрических разрядах с жидким электролитным катодом // Журн. аналит. химии. 2004. Т. 59. № 1. С. 73.
  15. 15. Yagov V.V., Korotkov A.S., Zhirkov A.A., Zuev B.K. Pulsed atomization and excitation sources with solution electrodes for optical emission spectroscopy / Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Cham: Springer International Publishing, 2023. P. 517.
  16. 16. Decker C.G., Webb M.R. Measurement of sample and plasma properties in solution-cathode glow discharge and effects of organic additives on these properties // J. Anal. At. Spectrom. 2015. V. 31. № 1. P. 311.
  17. 17. Doroski T.A., Webb M.R. Signal enhancement in solution-cathode glow discharge – Optical emission spectrometry via low molecular weight organic compounds // Spectrochim. Acta B: At. Spectrosc. 2013. V. 88. P. 40.
  18. 18. Swiderski K., Dzimitrowicz A., Jamroz P., Pohl P. Influence of pH and low-molecular weight organic compounds in solution on selected spectroscopic and analytical parameters of flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) for the optical emission spectrometric (OES) determination of Ag, Cd, and Pb // J. Anal. At. Spectrom. 2018. V. 33. № 3. P. 437.
  19. 19. Gorska M., Pohl P., Greda K. The application of antioxidant compounds to minimize matrix effects in flowing liquid anode atmospheric pressure glow discharge optical emission spectrometry // Microchem. J. 2021. V. 164. Article 105975.
  20. 20. Greda K., Szymczycha-Madeja A., Pohl P. Study and reduction of matrix effects in flowing liquid anode – Atmospheric pressure glow discharge – Optical emission spectrometry // Anal. Chim. Acta. 2020. V. 1123. P. 81.
  21. 21. Ягов В.В., Коротков А.С., Жирков А.А., Погонин В.И., Зуев Б.К. Портативный атомно-эмиссионный спектрометр для анализа растворов на основе капельно-искрового разряда // Журн. аналит. химии. 2019. Т. 74. № 3. С. 234.
  22. 22. Ягов В.В., Жирков А.А. Аналитические возможности капельно-искрового спектрометра при вводе пробы в электролитный анод // Журн. аналит. химии. Т. 77. № 5. С. 427.
  23. 23. Агеев В.Н., Бурмистрова О.П., Кузнецов Ю.А. Десорбция, стимулированная электронными возбуждениями // Успехи физ. наук. 1989. Т. 158. № 3. С. 389.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека