RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Selective Adsorbents Based on Imprinted Glucose Oxidase

PII
10.31857/S0044450223090104-1
DOI
10.31857/S0044450223090104
Publication type
Status
Published
Authors
Volume/ Edition
Volume 78 / Issue number 9
Pages
807-812
Abstract
A procedure for the synthesis of a highly selective adsorbent based on an imprinted protein (IP), glucose oxidase (GO), and commercially available SiO2 microparticles for the sorption of mycotoxin zearalenone produced by fungi of the Fusarium species is developed. The use of 3D fluorescence spectroscopy for the control of the process of IP purification is proposed for the first time. A possibility of replacing the zearalenone molecule as a template molecule with structural analogues with lower toxicity is assessed. The analytical characteristics of the determination of zearalenone using imprinted GO as a receptor element in enzyme immunoassay are determined: the limit of detection is 5 ng/mL, the linear analytical range is 11–112 ng/mL. High sorption characteristics of the synthesized adsorbent based on IP (sorption capacity—7.6 μg/mg sorbent; imprinting factor—2.5) are shown.
Keywords
молекулярный импринтинг импринтированные белки глюкозооксидаза зеараленон флуоресценция 3D флуоресцентная спектроскопия.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Mahato D.K., Devi S., Pandhi S., Sharma B., Maurya K.K., Mishra S., Dhawan K., Selvakumar R., Kamle M., Mishra A.K., Kumar P. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review // Toxins. 2021. V. 13. № 2. P. 92. https://doi.org/10.3390/toxins13020092
  2. 2. Haque M.A., Wang Y., Shen Z., Li X., Saleemi M.K., He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review // Microb. Pathog. 2020. V. 142. Article 104095. https://doi.org/10.1016/j.micpath.2020.104095
  3. 3. Gupta R.C., Mostrom M.S., Evans T.J. Zearalenone / Veterinary Toxicology. Elsevier, 2018. P. 1055. https://doi.org/10.1016/B978-0-12-811410-0.00076-3
  4. 4. Taranu I., Braicu C., Marin D.E., Pistol G.C., Motiu M., Balacescu L., Beridan Neagoe I., Burlacu R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression // Toxicol. Lett. 2015. V. 232. № 1. P. 310. https://doi.org/10.1016/j.toxlet.2014.10.022
  5. 5. Технический регламент таможенного союза “О безопасности зерна” (ТР ТС 015/2011). clck.ru/33utzE (дата обращения 30.03.2023).
  6. 6. Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю). clck.ru/33uu2q (дата обращения 30.03.2023).
  7. 7. E. U. Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products, 2007. clck.ru/33vPwZ (дата обращения 30.03.2023).
  8. 8. Fleck S.C., Hildebrand A.A., Müller E., Pfeiffer E., Metzler M. Genotoxicity and inactivation of catechol metabolites of the mycotoxin zearalenone // Mycotoxin Res. 2012. V. 28. № 4. P. 267. https://doi.org/10.1007/s12550-012-0143-x
  9. 9. Moreau M., Lescure G., Agoulon A., Svinareff P., Orange N., Feuilloley M. Application of the pulsed light technology to mycotoxin degradation and inactivation: Destruction of mycotoxins by pulsed light // J. Appl. Toxicol. 2013. V. 33. № 5. P. 357. https://doi.org/10.1002/jat.1749
  10. 10. Loi M., Fanelli F., Liuzzi V., Logrieco A., Mulè G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives // Toxins. 2017. V. 9. № 4. P. 111. https://doi.org/10.3390/toxins9040111
  11. 11. Lucci P., David S., Conchione C., Milani A., Moret S., Pacetti D., Conte, L. Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils // Foods. 2020. V. 9. № 10. P. 1439. https://doi.org/10.3390/foods9101439
  12. 12. Gutierrez A.V.R., Hedström M., Mattiasson B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor // Biotechnol. Reports. 2016. V. 11. P. 12. https://doi.org/10.1016/j.btre.2016.05.006
  13. 13. Pidenko P., Zhang H., Lenain P., Goryacheva I., De Saeger S., Beloglazova N. Imprinted proteins as a receptor for detection of zearalenone // Anal. Chim. Acta. 2018. V. 1040. P. 99. https://doi.org/10.1016/j.aca.2018.07.062
  14. 14. Beloglazova N., Lenain P., Tessier M., Goryacheva I., Hens Z., De Saeger S. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone // Talanta. 2019. V. 192. P. 169. https://doi.org/10.1016/j.talanta.2018.09.042
  15. 15. Pidenko P., Presnyakov K., Beloglazova N., Burmistrova N. Imprinted proteins for determination of ovalbumin // Anal. Bioanal. Chem. 2022. V. 414. № 18. P. 5609. https://doi.org/10.1007/s00216-022-04009-3
  16. 16. Liu J., Zhang K., Ren X., Luo G., Shen J. Bioimprinted protein exhibits glutathione peroxidase activity // Anal. Chim. Acta. 2004. V. 504. № 1. P. 185. https://doi.org/10.1016/S0003-2670 (03)00763-3
  17. 17. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Zacharevich A.M., Skibina Y.S., Beloglazova N.V., Goryacheva I.Y. Soft glass multi-channel capillaries as a platform for bioimprinting // Talanta. 2020. V. 208. Article 120445. https://doi.org/10.1016/j.talanta.2019.120445
  18. 18. Sánchez D.A., Alnoch R.C., Tonetto G.M., Krieger N., Ferreira M.L. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12 // J. Biotechnol. 2021. V. 342. P. 13. https://doi.org/10.1016/j.jbiotec.2021.09.022
  19. 19. Li B., Duan D., Wang J., Li H., Zhang X., Zhao B. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol // J. Biotechnol. 2018. V. 281. P. 67. https://doi.org/10.1016/j.jbiotec.2018.06.343
  20. 20. Li K., Wang J., He Y., Cui G., Abdulrazaq M.A., Yan Y. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles // Chem. Eng. J. 2018. V. 351. P. 258. https://doi.org/10.1016/j.cej.2018.06.086
  21. 21. Haskell A.K., Sulman A.M., Golikova E.P., Stein B.D., Pink M., Morgan D.G., Lakina N.V., Karpenkov A.Yu., Tkachenko O.P., Sulman E.M., Matveeva V.G., Bronstein L.M. Glucose oxidase immobilized on magnetic zirconia: Controlling catalytic performance and stability // ACS Omega. 2020. V. 5. № 21. P. 12329. https://doi.org/10.1021/acsomega.0c01067
  22. 22. Drozd D.D., Pidenko P.S., Presnyakov K.Y., Strokin P.D., Speranskaya E.S., Goryacheva I.Y. Dihydrolipoic acid coated alloyed quantum dots / Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine / Eds. Tuchin V.V., Genina E.A. 2020. V. 1145714. https://doi.org/10.1117/12.2564393
  23. 23. Mahdizadeh F., Eskandarian M. Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers // J. Ind. Eng. Chem. 2014. V. 20. № 4. P. 2378. https://doi.org/10.1016/j.jiec.2013.10.016
  24. 24. Zhou G., Fung K.K., Wong L.W., Chen Y., Renneberg R., Yang S. Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors // Talanta. 2011. V. 84. № 3. P. 659. https://doi.org/10.1016/j.talanta.2011.01.058
  25. 25. Tamer U., Seçkin A.İ., Temur E., Torul H. Fabrication of biosensor based on polyaniline/gold nanorod composite // Int. J. Electrochem. 2011. V. 2011. P. 1. https://doi.org/10.4061/2011/869742
  26. 26. Cai W., Li H.-H., Lu Z.-X., Collinson M.M. Bacteria assisted protein imprinting in sol–gel derived films // Analyst. 2018. V. 143. № 2. P. 555. https://doi.org/10.1039/C7AN01509G
  27. 27. Sakamoto S., Minami K., Nuntawong P., Yusakul G., Putalun W., Tanaka H., Fujii S., Morimoto S. Bioimprinting as a receptor for detection of kwakhurin // Biomolecules. 2022. V. 12. № 8. P. 1064. https://doi.org/10.3390/biom12081064
  28. 28. Ayadi C., Anene A., Kalfat R., Chevalier Y., Hbaieb S. Molecularly imprinted polyaniline on silica support for the selective adsorption of benzophenone-4 from aqueous media // Colloids Surf. A: Physicochem. Eng. Aspects. 2019. V. 567. 2019. P. 32. https://doi.org/10.1016/j.colsurfa.2019.01.042
  29. 29. Janati-Fard F., Housaindokht M.R., Monhemi H. Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits // J. Mol. Catal. B: Enzym. 2016. V. 134. P. 16. https://doi.org/10.1016/j.molcatb.2016.09.008
  30. 30. Drozd D.D., Byzova N.A., Pidenko P.S., Tsyupka D.V., Strokin P.D., Goryacheva O.A., Zherdev A.V., Goryacheva I.Yu., Dzantiev B.B. Luminescent alloyed quantum dots for turn-off enzyme-based assay // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4471. https://doi.org/10.1007/s00216-022-04016-4
  31. 31. Nakamura S., Fujiki S. Comparative studies on the glucose oxidases of Aspergillus Niger and Penicillium amagasakiense // J. Biochem. 1968. V. 63. № 1. P. 51. https://doi.org/10.1093/oxfordjournals.jbchem.a128747
  32. 32. Yiu H.H.P., Wright P.A. Enzymes supported on ordered mesoporous solids: A special case of an inorganic–organic hybrid // J. Mater. Chem. 2005. V. 15. № 35–36. P. 3690. https://doi.org/10.1039/b506090g
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library