- Код статьи
- 10.31857/S0044450223090116-1
- DOI
- 10.31857/S0044450223090116
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 78 / Номер выпуска 9
- Страницы
- 783-806
- Аннотация
- Рассмотрено проявление в методе масс-спектрометрии с индуктивно связанной плазмой (МС-ИСП) однозарядных аргидных ионов ArМ+, которые могут создавать значимые спектральные помехи при определении всех элементов Периодической системы с атомным номером выше 40 и измерении их изотопного состава. Приведены примеры таких характерных помех, указаны рекомендуемые и используемые таблицы помех для различных элементов. Обобщены опубликованные данные по определению энергий диссоциации ионов ArМ+ экспериментальными и теоретическими методами. Обсуждена связь энергий диссоциации аргидных ионов с их интенсивностями в масс-спектре. Рассмотрено экспериментальное определение численных значений уровня помех ArM+/M+ в МС-ИСП и влияние различных приборных и операционных факторов на это отношение. Указаны основные пути учета, снижения интенсивности ArM+ в масс-спектрах или полного удаления помех аргидных ионов. Сделаны заключение и рекомендации по рассмотренным публикациям.
- Ключевые слова
- масс-спектрометрия с индуктивно связанной плазмой аргидные ионы энергии диссоциации ионов операционные параметры приборов эффективность образования аргидных ионов в индуктивно связанной плазме дискриминация ионов по массе.
- Дата публикации
- 15.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Пупышев А.А., Суриков В.Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: Изд-во УрО РАН, 2006. 276 с.
- 2. Becker J.S. Inorganic Mass Spectrometry. Principles and Applications. John Wiley & Sons Ltd., 2007. 519 p.
- 3. Becker J.S., Dietze H.-J. Investigations on cluster and molecular ion formation by plasma mass spectrometry // Fresenius J. Anal. Chem. 1997. V. 359. P. 338. https://doi.org/10.1007/s002160050583
- 4. Hattendorf B., Gusmini B., Dorta L., Houk R.S., Gunther D. Mass spectrometric observation of doubly charged alkaline-earth argon ions // Chem. Phys. Chem. 2016. V. 17. P. 1. https://doi.org/10.1002/cphc.201600441
- 5. Hattendorf B., Gusmini B., Dorta L., Houk R.S., Gunther D. Abundance and impact of doubly charged polyatomic argon interferences in ICPMS spectra // Anal. Chem. 2016. V. 88. P. 7281. https://doi.org/10.1021/acs.analchem.6b01614
- 6. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе масс-спектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.
- 7. May T.W., Wiedmeyer R.H. A Table of polyatomic interferences in ICP-MS // Atom. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002
- 8. Hattendorf B. Ion molecule reactions for the suppression of spectral interferences in elemental analysis by inductively coupled plasma mass spectrometry. Thesis … doctor of natural sciences. Zürich: Eidgenössische Technische Hochschule, 2002. 169 p.
- 9. Taylor H.E. Inductively Coupled Plasma Mass-spectrometry. Practices and Techniques. Academic Press, 2001. 291 p.
- 10. Fang Liu. Building a database with background equivalent concentrations to predict spectral overlaps in ICP-MS. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2017. 342 p.
- 11. Mason T.F.D., Weiss D.J., Horstwood M., Parrish R.R., Russell S.S., Mullane E., Coles B.J. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry. Part 1. Spectral interferences and their correction // J. Anal. Atom. Spectrom. 2004. V. 19. P. 209. https://doi.org/10.1039/B306958C
- 12. Gregoire D.C., Sturgeon R.E. Background spectral features in electrothermal vaporization inductively coupled plasma mass spectrometry: Molecular ions resulting from the use of chemical modifiers // Spectrochim. Acta B: Atom. Spectrosc. 1993. V. 48. № 11. P. 1347. https://doi.org/10.1016/0584-8547 (93)80123-c
- 13. Vanhaecke F. Single-collector inductively coupled plasma mass spectrometry / Isotopic Analysis. Fundamentals and Applications Using ICP-MS / Ed. Vanhaecke Frank, Degryse Patrick. WILEY-VCH Verlag GmbH & Co. KGaA, 2012. P. 31.
- 14. Пупышев А.А., Сермягин Б.А. Дискриминация ионов по массе при изотопном анализа в методе масс-спектрометрии с индуктивно связанной плазмой. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 132 с.
- 15. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: Atom. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547 (01)00236-1
- 16. Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547 (94)80084-7
- 17. Sakata K., Kawabata K. Reduction of fundamental polyatomic ions in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. № 10. P. 1027. https://doi.org/10.1016/0584-8547 (94)80088-X
- 18. Becker J.S., Seifert G., Saprykin A.I., Dietze H.-J. Mass spectrometric and theoretical investigations into the formation of argon molecular ions in plasma mass spectrometry // J. Anal. Atom. Spectrom. 1996. V. 11. P. 643. https://doi.org/10.1039/JA9961100643
- 19. Rowley L.K. Fundamental studies of interferences in ICP-MS. Thesis … doctor of philosophy. Plymouth: University of Plymouth, 2000. 246 p.
- 20. Hattendorf B., Gunther D., Schonbachler M., Halliday A. Simultaneous ultratrace determination of Zr and Nb in chromium matrixes with ICP-dynamic reaction cell MS // Anal. Chem. 2001. V. 73. P. 5494. https://doi.org/10.1021/ac015549a
- 21. Mei-Fu Zhou, John Malpas, Min Sun, Ying Liu, Xiao Fu. A new method to correct Ni- and Cu-argide interference in the determination of the platinum-group elements, Ru, Rh, and Pd, by ICP-MS // Geochem. J. 2001. V. 35. P. 413. https://doi.org/10.2343/geochemj.35.413
- 22. Petibon C.M., Longerich H.P., Horn I., Tubrett M.N. Neon inductively coupled plasma for laser ablation-inductively coupled plasma-mass spectrometry // A-ppl. Spectrosc. 2002. V. 56. № 5. P. 658. https://doi.org/10.1366/0003702021955231
- 23. Jones D.M.R. A study of ion-molecule reactions in a dynamic reaction cell to improve elemental analysis with inductively coupled plasma-mass spectrometry. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2007. 629 p.
- 24. Guillong M., Danyushevsky L., Walleb M., Raveggic M. The effect of quadrupole ICPMS interface and ion lens design on argide formation. Implications for LA-ICPMS analysis of PGE’s in geological samples // J. Anal. Atom. Spectrom. 2011. V. 26. P. 1401. https://doi.org/10.1039/c1ja10035a
- 25. Fialho L.L., Pereira C.D., Nóbrega J.A. Combination of cool plasma and collision-reaction interface for correction of polyatomic interferences on copper signals in inductively coupled plasma quadrupole mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2011. V. 66. P. 389. https://doi.org/10.1016/j.sab.2011.04.001
- 26. Witte T.M., Houk R.S. Metal argide (MAr+) ions are lost during ion extraction in laser ablation-inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2012. V. 69. P. 25. https://doi.org/10.1016/j.sab.2012.02.008
- 27. Witte T.M. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates. Diss. … doctor of philosophy. Ames, Iowa: Iowa State University, 2011. 192 p.
- 28. Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046
- 29. Chernonozhkin S.M., Costas-Rodrıguez M., Claeys P., Vanhaecke F. Evaluation of the use of cold plasma conditions for Fe isotopic analysis via multi-collector ICP-mass spectrometry: Effect on spectral interferences and instrumental mass discrimination // J. Anal. Atom. Spectrom. 2017. V. 32. P. 538. https://doi.org/10.1039/C6JA00428H
- 30. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов: Справочник. Москва: Энергоатомиздат, 1986. 344 с.
- 31. Giantureo F.A., Niedner G., Noll M., Semprini E., Stefani F., Toennies J.P. Potential energy curves for the (ArH)+ and (NeH)+ systems from the interplay of theory and experiments // Z. Phys. D: Atoms, Molecules and Clusters. 1987. V. 7. P. 281. https://doi.org/10.1007/BF01384995
- 32. Хьюбер К.П., Герцберг Г. Константы двухатомных молекул. Часть 1. Молекулы Ag2-MoO. Москва: Мир, 1984. 408 с. (Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. New York et al.: Van Nostrand Reinhold Company, 1979. 716 p.)
- 33. Pettitt B.M., Jacobson K., Matcha R.L. Collinear reaction surface for He and ArH+ // The J. Chem. Phys. 1980. V. 72. P. 2892. https://doi.org/10.1063/1.439398
- 34. Grandinetti F. Noble Gas Chemistry Structure, Bonding, and Gas-phase Chemistry. Weinheim, Germany: Wiley-VCH, 2018. 345 p.
- 35. Grandinetti F. Gas-phase ion chemistry of the noble gases: Recent advances and future perspectives // Eur. J. Mass Spectrom. 2011. V. 17. P. 423. https://doi.org/10.1255/ejms.1151
- 36. Rosmus P. Molecular constants for the 1Σ+ ground state of the ArH+ ion // Theoret. Chim. Acta (Berl.). 1979. V. 51. P. 359. https://doi.org/10.1007/BF00548944
- 37. Schutte C.J.H. An ab initio molecular orbital study of the argon hydride molecule-ions, ArH+ and ArD+, at the MP4(SDQ)/6-311++G(3df, 3dp) level. III: A study of some physical properties of ArH+, compared with those of HeH+, NeH+ and KrH+ and the diatomic Van der Waals molecules He2, Ne2, Ar2 and Kr2 // Chem. Phys. Lett. 2002. V. 353. № 5–6. P. 389. https://doi.org/10.1016/S0009-2614 (01)00919-8
- 38. Lorenzen J., Hotop H., Ruf M.-W., Morgner H. Rovibronic structure in the electron energy spectrum for associative ionization: Ne(3P2), Ar(3P2)+H // Z. Phys. A: Atoms and Nuclei. 1980. V. 297. P. 19. https://doi.org/10.1007/BF01414240
- 39. Nonose N. Formation of interfering polyatomic ion species in inductively coupled plasma mass spectrometer // J. Mass Spectrom. Soc. Jpn. 1997. V. 45. № 1. P. 77. https://doi.org/10.5702/massspec.45.77
- 40. Luo Yu-Ran. Comprehensive Handbook of Chemical Bond Energies. Boca Raton: CRC Press, 2007. 1686 p. https://doi.org/10.1201/9781420007282
- 41. Ruette F., Sanchez M., Anez R., Bermudez A., Sierraalta A. Diatomic molecule data for parametric methods. I // J. Mol. Struct: THEOCHEM. 2005. V. 729. P. 19. https://doi.org/10.1016/j.theochem.2005.04.024
- 42. Frenking G., Koch W., Cremer D., Gauss J., Liebman J.F. Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li–Ne) // J. Phys. Chem. 1989. V. 93. P. 3410. https://doi.org/10.1021/j100346a008
- 43. Bauschlicher C.W., Jr., Partridge H., Langhoff S.R. Theoretical study of metal noble gas positive ions // J. Chem. Phys. 1989. V. 91. P. 4733. https://doi.org/10.1063/1.456762
- 44. Bauschlicher C. Jr., Partridge H., Langhoff S.R. Comparison of the bonding between ML+ and ML (M = Metal, L = Noble Gas) // Chem. Phys. Lett. 1990. V. 165. P. 272. https://doi.org/10.1016/0009-2614 (90)85441-E
- 45. Gardner A.M., Withers C.D., Graneek J.B., Wright T.G., Viehland L.A., Breckenridge W.H. Theoretical study of M+-RG and M2+-RG complexes and transport of M+ through RG (M = Be and Mg, RG = He–Rn) // J. Phys. Chem A. 2010. V. 114. P. 7631. https://doi.org/10.1021/jp4075652
- 46. Lüder Ch., Velegrakis M. Photofragmentation spectrum of the Sr+Ar complex // J. Chem. Phys. 1996. V. 105. P. 2167. https://doi.org/10.1063/1.472090
- 47. Wong M.W., Radom L. Multiply bonded argon-containing ions: Structures and stabilities of XAr+ cations (X = B, C, N; n = 1–3) // J. Phys. Chem. 1989. V. 93. P. 6303. https://doi.org/10.1021/j100354a009
- 48. Koskinen J.T., Cooks R.G. Novel rare gas ions BXe+, BKr+, and BAr+ formed in a halogen/rare gas exchange reaction // J. Phys. Chem. A. 1999. V. 103. № 48. P. 9565. https://doi.org/10.1021/jp993091z
- 49. Broström L., Larsson M., Mannervik S., Sonnek D. The visible photoabsorption spectrum and potential curves of ArN+ // J. Chem. Phys. 1991. V. 94. P. 2734. https://doi.org/10.1063/1.459850
- 50. Technical overview and performance capability of the Agilent 7900s ICP-MS for semiconductor applications. Agilent Technologies, Inc., 2020. 6 p. DE.0433912037
- 51. Karlau D.J., Weise J. The potential of Ar–O+(4X–) // Chem. Phys. Lett. 1977. V. 45. № 1. P. 92.
- 52. Frenking G., Koch W., Deakyne C.A., Liebman A., Bartlettle B. The ArF+ cation. Is it stable enough to be isolated in a salt? // J. Am. Chem. Soc. 1989. V. 111. № 1. P. 31. https://doi.org/10.1021/ja00183a005
- 53. Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н., Лебедев Ю.А., Медведев В.А., Потапов В.К., Ходеев Ю.С. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. Москва: Наука, 1974. 354 с.
- 54. Partridge H., Bauschlicher C.W., Jr., Langhoff S.R. Theoretical study of metal ions bound to He, Ne, and Ar // J. Phys. Chem. 1992. V. 96. P. 5350. https://doi.org/10.1021/j100192a032
- 55. Gaied W., Habli H., Oujia B., Gadea F.X. Theoretical study of the MgAr molecule and its ion Mg+Ar: potential energy curves and spectroscopic constants // Eur. Phys. J. D. 2011. V. 62. P. 371. https://doi.org/10.1140/epjd/e2011-10572-y
- 56. Buthelezi T., Bellert D., Hayes T., Brucat P.J. The adiabatic binding energy of NbAr+ // Chem. Phys. Lett. 1996. V. 262. P. 303. https://doi.org/10.1016/0009-2614 (96)01095-0
- 57. Pilgrim J.S., Yeh C.S., Berry K.R., Duncan M.A. Photodissociation spectroscopy of Mg+-rare gas complexes // J. Chem. Phys. 1994. V. 100. P. 7945. https://doi.org/10.1063/1.466840
- 58. Heidecke S.A., Fu Z., Colt J.R., Morse M.D. Spectroscopy of AlAr and AlKr from 31000 cm–1 to the ionization limit // The J. Chem. Phys. 1992. V. 97. P. 1692. https://doi.org/10.1063/1.463157
- 59. Cleland T.J., Meeks F.R. Statistical mechanics of the in an inductively coupled plasma // Spectrochim. Acta B: Atom. Spectrom. 1996. V. 51. P. 1487. https://doi.org/10.1016/0584-8547 (96)01530-310.1016/0584-8547(96)01530-3
- 60. Gardner A.M., Withers C.D., Wright T.G., Kaplan K.I., Chivone Y.N., Chapman C.Y.N, Viehland L.A., Lee E.P.F., Breckenridge W.H. Theoretical study of the bonding in Mn+-RG complexes and the transport of Mn+ through rare gas (M = Ca, Sr, and Ra; n = 1 and 2; and RG = He–Rn) // J. Chem. Phys. 2010. V. 132. Article 054302. https://doi.org/10.1063/1.3297891
- 61. Hayes T., Bellert D., Buthelezi T., Brucat P.J. The bond length of VAr+ // Chem. Phys. Lett. 1998. V. 287. P. 22. https://doi.org/10.1016/S0009-2614 (98)00129-8
- 62. Lessen D., Brucat P.J. Characterization of transition metal–raregas cations: VAr+ and VKr+ // J. Chem. Phys. 1989. V. 91. P. 4522. https://doi.org/10.1063/1.456790
- 63. Grills D.C., George M.W. Transition metal-noble gas complexes // Adv. Inorg. Chem. 2001. V. 52. P. 113. https://doi.org/10.1016/S0898-8838 (05)52002-6
- 64. Hammond B.L., Lester W.A., Jr., Braga M., Taft C.A. Theoretical study of the interaction of ionized transition metals (Cr, Mn, Fe, Co, Ni, Cu) with argon // Phys. Rev B. 1990-II. V. 41. № 15. P. 10447. https://doi.org/10.1103/PhysRevB.41.10447
- 65. Lessen D.E., Asher R.L., Brucat P.J. Spectroscopically determined binding energies of CrAr+ and Cr(N2)+ // Chem. Phys. Lett. 1991. V. 17. № 4–5. P. 380. https://doi.org/10.1016/0009-2614 (91)85069-9
- 66. Hoshino H., Yamakita Y., Okutsu K., Suzuki Y., Saito M., Koyasu K., Ohshimo K., Misaizu F. Photofragment imaging from mass-selected ions using a reflectron mass spectrometer. I. Development of an apparatus and application to Mg+–Ar complex // Chem. Phys. Lett. 2015. V. 630. P. 111. https://doi.org/10.1016/j.cplett.2015.04.033
- 67. Tjelta1 B.L., Walter D., Armentrout P.B. Determination of weak Fe–L bond energies (L = Ar, Kr, Xe, N2, and CO2) by ligand exchange reactions and collision induced dissociation // Int. J. Mass Spectrom. 2001. V. 204. P. 7. https://doi.org/10.1016/S1387-3806 (00)00342-0
- 68. Bastug T., Sepp W.-D., Fricke B., Johnson E., Barshick C.M. All-electron relativistic Dirac-Fock-Slater self-consistent-field calculations of the singly charged diatomic transition-metal-(Fe, Co, Ni, Cu, Zn) argon molecules // Phys. Rev A. 1995. V. 52. № 4. P. 2734. https://doi.org/10.1103/PhysRevA.52.2734
- 69. Barshick C.M., Smith D.H., Johnson E., King F.L., Bastug T., Fricke B. Periodic nature of metal-noble gas adduct ions in glow discharge mass spectrometry // Appl. Spectrosc. 1995. V. 49. № 7. P. 885. https://doi.org/10.1366/0003702953964840
- 70. Lessen D., Brucat P.J. Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure // J. Chem. Phys. 1989. V. 90. P. 6296. https://doi.org/10.1063/1.456346
- 71. Asher R.L., Bellert D., Buthelezi T., Brucat P.J. The ground state of CoAr+ // Chem. Phys. Lett. 1994. V. 227. P. 277. https://doi.org/10.1016/0009-2614 (94)00828-0
- 72. Bauschlicher C.W., Jr., Langhoff S.R. Theoretical study of NiAr+ // Chem. Phys. Lett. 1989. V. 158. № 5. P. 409. https://doi.org/10.1016/0009-2614 (89)87361-0
- 73. Lessen D., Brucat P.J. On the nature of NiAr+ // Chem. Phys. Lett. 1988. V. 152. № 6. P. 473. https://doi.org/10.1016/0009-2614 (88)80444-5
- 74. Yousef A., Shrestha S., Viehland L.A., Lee E.P.F, Gray B.R., Ayles V.L., Wright T.G., Breckenridge W.H. Interaction potentials and transport properties of coinage metal cations in rare gases // J. Chem. Phys. 2007. V. 127. Article 154309. https://doi.org/10.1063/1.2774977
- 75. Asher R.L., Bellert D., Buthelezi T., Lessen D., Brucat P.J. The bond length of ZrAr+ // Chem. Phys. Lett. 1995. V. 234. P. 119. https://doi.org/10.1016/0009-2614 (95)00006-P
- 76. McGuirk M.F., Viehland L.A., Lee E.P.F., Breckenridge W.H., Withers C.D, Gardner A.M., Plowright R.J., Wright T.G. Theoretical study of Ban+–RG (RG = rare gas) complexes and transport of Ban+ through RG (n = 1, 2; RG = He-Rn) // J. Chem. Phys. 2009. V. 130. Article 194305. https://doi.org/10.1063/1.3132543
- 77. Музгин В.Н., Емельянова Н.И., Пупышев А.А. Масс-спектрометрия с индуктивно-связанной плазмой – новый метод в аналитической химии // Аналитика и контроль. 1998. Т. 2. № 3–4. С. 3.
- 78. Niu Hongsen, Houk R.S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry // Spectrochim Acta B: Atom. Spectrosc. 1996. V. 51. P. 779. https://doi.org/10.1016/0584-8547 (96)01506-6
- 79. De Jong J., Schoemann V., Tison J.-L., Becquevort S., Masson F., Lannuzel D., Petit J., Chou L., Weis D., Mattielli N. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) // Anal. Chim. Acta. 2007. V. 589. P. 105. https://doi.org/10.1016/j.aca.2007.02.055
- 80. Hill S.J., Ford M.J., Ebdon L. Investigations into the application of methane addition to the nebulizer gas in inductively coupled plasma mass spectrometry for the removal of polyatomic interferences // J. Anal. Atom. Spectrom. 1992. V. 7. P. 1157. https://doi.org/10.1039/JA9920701157
- 81. Montaser A., Zhung A. Mass spectrometry with mixed gas and helium / Inductively Coupled Plasma Mass Spectrometry. New York et al.: Wiley-VCH Inc., 1998. P. 809.
- 82. De Jong J., Schoemann V., Tison J.-L., Becquevort S., Masson F., Lannuzel D., Petit J., Chou L., Weis D., Mattielli N. Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) // Anal. Chim. Acta. 2007. V. 589. P. 105. https://doi.org/10.1016/j.aca.2007.02.055
- 83. Pons M.L., Millet M.-A., Nowell G.N., Misra S., Williams H.M. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76–78 double-spike // J. Anal. At. Spectrom. 2020. V. 35. P. 320. https://doi.org/10.1039/c9ja00331b
- 84. De Jong J., Schoemann V., Lannuzel D., Tisond J.-L., Mattielli N. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation // Anal. Chim. Acta. 2008. V. 623. P. 126. https://doi.org/10.1016/j.aca.2008.06.013
- 85. De Boer J.L.M. Real-time adjustment of ICP-MS elemental equations // J. Anal. Atom. Spectrom. 2000. V. 15. P. 1157. https://doi.org/10.1039/b001101k
- 86. De Boer J.L.M. Possibilities and limitations of spectral fitting to reduce polyatomic ion interferences in inductively coupled plasma quadrupole mass spectrometry in the mass range 51–88 // Spectrochim. Acta B: Atom. Spectrosc. 1997. V. 52. P. 389. https://doi.org/10.1016/S0584-8547 (96)01604-7
- 87. Van Veen E.H, Bosch S., Loos-Vollebregt T.C. Spectral interpretation and interference correction in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: Atom. Spectrosc. 1994. V. 49. P. 1347. https://doi.org/10.1016/0584-8547 (94)80114-2
- 88. Whiteley J.D., Murray F. Determination of platinum group elements (PGE) in environmental samples by ICP-MS: A critical assessment of matrix separation for the mitigation of interferences // Geochem.: Explor., Environ., Anal. 2005. V. 5. P. 3. https://doi.org/10.1144/1467-7873/03-0
- 89. Segura M., Madrid Y., Camara C. Elimination of calcium and argon interferences in iron determination by ICP-MS using desferrioxamine chelating agent immobilized in sol–gel and cold plasma conditions // J. Anal. Atom. Spectrom. 2003. V. 18. P. 1103. https://doi.org/10.1039/b301719m
- 90. Vanhaecke F., Balcaen L., Wannemacker G.D., Moens L. Capabilities of inductively coupled plasma mass spectrometry for the measurement of Fe isotope ratios // J. Anal. Atom. Spectrom. 2002. V. 17. P. 933. https://doi.org/10.1039/B202409H
- 91. Gray P.J. Nanoparticle characterization, fundamental studies and computer simulations of dynamic reaction cell inductively coupled plasma mass spectrometry. Diss. … doctor of philosophy. Ohio, USA: The Ohio State University, 2011. 447 p.
- 92. McShane W.J., Pappas R.S., Paschal D. Analysis of total arsenic, total selenium and total chromium in urine by inductively coupled plasma-dynamic reaction cell-mass spectrometry // J. Anal. Atom. Spectrom. 2007. V. 22. P. 630. https://doi.org/10.1039/B613884E
- 93. Tanner S.D., Baranov V.I., Bandura D.R. Reaction cells and collision cells for ICP-MS: A tutorial review // Spectrochim. Acta B: Atom. Spectrosc. 2002. V. 57. P. 1361. https://doi.org/10.1016/S0584-8547 (02)00069-1
- 94. Yamada N., Takahashi J., Sakata K. The effects of cell-gas impurities and kinetic energy discrimination in an octopole collision cell ICP-MS under non-thermalized conditions // J. Anal. Atom. Spectrom. 2002. V. 17. P. 1213. https://doi.org/10.1039/b205416g
- 95. Balaram V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments // Rapid Commun. Mass Spectrom. 2021. V. 35. Article e9065. https://doi.org/10.1002/rcm.9065
- 96. Anicich V.G., Huntress W.T., Jr. A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds // The Astrophys. J. Suppl. Ser. 1986. V. 62. P. 553. https://doi.org/10.1086/191151
- 97. Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G. Gas-phase ion and neutral thermochemistry // J. Phys. Chem. Ref. Data. 1988. V. 17. Supplement № 1. 880 p.
- 98. Anicich V.G. An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics. JPL Publication 03-19. Pasadena: NASA, 2003. 1194 p.
- 99. Naoki Sugiyama, Kazumi Nakano. Reaction data for 70 elements using O2, NH3 and H2 gases with the Agilent 8800 Triple Quadrupole ICP-MS. Technical note. Publication number: 5991-4585EN Agilent Technologies, Japan, 2014. 14 p.
- 100. Agilent 8800 Triple Quadrupole ICP-MS: Understanding oxygen reaction mode in ICP-MS/MS. Agilent 8800 ICP-QQQ. Technical Overview. Agilent Technologies, Inc., 2012. 8 p.
- 101. Yu L.L., Vocke R.D., Murphy K.E., Beck C.M. II. Determination of As, Cd, Cr, and Hg in SRM 2584 (Trace elements in indoor dust) by high-resolution inductively coupled plasma mass spectrometry // Fresenius J. Anal. Chem. 2001. V. 370. P. 834. https://doi.org/10.1007/s002160100888
- 102. Galbacs G., Keri A., Kalomista I., Kovacs-Szeles E., Gornushkin I.B. Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling // Anal. Chim. Acta. 2020. V. 1104. P. 28. https://doi.org/10.1016/j.aca.2020.01.011
- 103. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temperature. 2020. V. 58. № 2. P. 184. )10.31857/S0040364420020131
- 104. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона и // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S004036441901017410.1134/S0040364419010174 (Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of and Ar2 argon dimers // High Temperature. 2019. V. 57. № 1. P. 37. )10.1134/S0040364419010174
- 105. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
- 106. Maltsev M.A., Kulikov A.N., Morozov I.V. Thermodynamic properties of vanadium and cobalt argide ions, VAr+ and CoAr+ // J. Phys.: Conf. Ser. 2016. V. 774. Article 012023. https://doi.org/10.1088/1742-6596/774/1/012023
- 107. Goodner K.L., Eyler J.R., Barshick C.M., Smith D.H. Elemental quantification based on argides, dimers charged glow discharge ions // Int. J. Mass Spectrom. Ion Process. 1995. V. 146/147. P. 65. https://doi.org/10.1016/0168-1176 (95)04204-X
- 108. Пупышев А.А. Тлеющий разряд по Гримму. Физические основы, исследование и применение в атомно-эмиссионном спектральном анализа / Пупышев А.А., Данилова Д.А. Атомно-эмиссионный спектральный анализ с индуктивно связанной плазмой и тлеющим разрядом по Гримму. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2002. С. 3.