RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Joint determination of nine uremic toxins and choline in blood serum using high-performance liquid chromatography with tandem mass spectrometric detection

PII
10.31857/S0044450224080094-1
DOI
10.31857/S0044450224080094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 79 / Issue number 8
Pages
900-909
Abstract
This paper presents a method for the simultaneous determination of nine uremic toxins and choline in blood serum. The target substances were selected based on literature data as potential biomarkers for assessing the severity and progression of immunoglobulin A nephropathy, a kidney disease that leads to disability, and, without timely treatment, death in young and middle-aged individuals. Ultrafiltration is used to separately determine free and protein-bound indolic uremic toxins in the blood. The use of high-performance liquid chromatography combined with high-resolution tandem mass spectrometry ensures satisfactory accuracy of the analysis without complete chromatographic separation of analytes under standard reversed-phase HPLC conditions. For calibration purposes, an albumin solution in phosphate buffer was used as a surrogate for blood serum. The protein concentration of 45 mg/mL and pH 7.4 match the characteristics of native blood serum. A pilot experiment demonstrated the feasibility of determining key indicators of the gut microbiome’s state—choline and trimethylamine N-oxide (TMAO)—in dried blood spots.
Keywords
уремические токсины холин сыворотка крови иммуноглобулин А нефропатия высокоэффективная жидкостная хроматография с тандемным масс-спектрометрическим детектированием высокого разрешения (ВЭЖХ-МС/МС ВР) триметиламиноксид (ТМАО) сухие пятна крови
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
55

References

  1. 1. Nair R., Walker P.D. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA // Kidney Int. 2006. V. 69. Р. 1455.
  2. 2. Шилов Е.М., Бобкова И.Н., Колина И.Б., Камышова Е.С. Клинические рекомендации по диагностике и лечению IgA-нефропатии // Нефрология. 2015. Т. 19. № 6. С. 83.
  3. 3. Boyd J.K., Barratt J. Immune complex formation in IgA nephropathy: CD89 a ‘saint’ or a ‘sinner’? // Kidney Int. 2010. V. 78. P. 1211.
  4. 4. Falconi C.A., Junho C.V. C., Fogaça-Ruiz F., Vernier I.C.S., da Cunha R.S., Stinghen A.E.M., et al. Uremic toxins: An alarming danger concerning the cardiovascular system // Front. Physiol. 2021. V. 12. Article 686249.
  5. 5. Go A.S., Chertow G.M., Fan D. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization // N. Engl. J. Med. 2004. V. 351. № 13. P. 1296.
  6. 6. Noce A., Marchetti M., Marrone G. Link between gut microbiota dysbiosis and chronic kidney disease // Eur. Rev. Med. Pharmacol. 2022. V. 26. № 6. P. 2057.
  7. 7. Huang Y., Xin W., Xiong J. The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease // Front Pharmacol. 2022. V. 13. Article 837500.
  8. 8. Bennett B., Vallim T., Wang Z. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation // Cell Metab. 2013. V. 17. № 1. P. 49.
  9. 9. Boini K.M., Hussain T., Li P.-L. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction // Cell Physiol. Biochem. 2017. V. 44. № 1. P. 152.
  10. 10. Ma G., Pan B., Chen Y., Guo C., Zhao M.M., Zheng L.M., Chen B.X. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion // Biosci. Rep. 2017. V. 37. № 2. BSR20160244.
  11. 11. Zheng Y., Tang Z., You L., Wu Y, Liu J, Xue J. Trimethylamine-N-oxide is an independent risk factor for hospitalization events in patients receiving maintenance hemodialysis // Ren Fail. 2020. V. 42. № 1. P. 580.
  12. 12. Yoo W., Zieba J.K., Foegeding N.J., Torres T.P., Shelton C.D., Shealy N.G. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide // Science. 2021. V. 373. P. 813.
  13. 13. Yoo W., Zieba J.K., Foegeding N.J., Torres T.P., Shelton C.D., Shealy N.G., et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide // Science. 2021. V. 373. P. 813.
  14. 14. Xu Y., Kong X., Zhu Y., Xu J., Mao H., Li J., et al. Contribution of gut microbiota toward renal function in sepsis // Front. Microbiol. 2022. V. 13. Article 985283.
  15. 15. Гецина М.Л., Черневская Е.А., Белобородова Н.В. Роль общих для человека и микробиоты метаболитов триптофана при тяжелых заболеваниях и критических состояниях // Клиническая практика. 2020. Т. 11. № 1. С. 92. (Getsina M.L., Chernevskaya E.A., Beloborodova N.V. The role of human and microbial metabolites of triptophane in severe diseases and critical Ill (review) // J. Clin. Pract. 2020. V. 11. № 1. P. 92.)
  16. 16. Tanaka H., Sirich T.L., Plummer N.S., Weaver D.S., Meyer T.W. An enlarged profile of uremic solutes // PLoS One. 2015. V. 10. № 8. Article 0135657. https://doi.org/10.1371/journal.pone.0135657
  17. 17. Mair R.D., Sirich T.L., Plummer N.S., Meyer T.W. Characteristics of colon-derived uremic solutes // Clin. J. of the American Soc Nephrol. 2018. V. 13. № 9. P. 1398–404. https://doi.org/10.2215/CJ N.03150318.
  18. 18. Liu G., Gibson R.A., Callahan D., Guo X.-F., Li D., Sinclair A.J. Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women // Food Funct. 2020. V. 11. № 3. P. 2058. https://doi.org/10.1039/c9fo02440a
  19. 19. Kikuchi K., Itoh Y., Tateoka R., Ezawa A., Murakami K., Niwa T. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry // J. Chromatogr. B. 2010. V. 878. № 29. P. 2997. https://doi.org/10.1016/j.jchromb.2010.09.006
  20. 20. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease // Nephrol. Dial. Transplant. 2010. V. 25. P. 1183. https://doi.org/10.1093/ndt/gfp592
  21. 21. Machado T.S., Poitevin S., Paul P., McKay N., Jourde-Chiche N., Legris T., et al. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling // Clin. J. Am. Soc Nephrol. 2018. V. 29. P. 906. https://doi. org/10.1681/AS N.2017030361
  22. 22. Ohkawa R., Kurano M., Sakai N., Kishimoto T., Nojiri T., Igarashi K. et al. Measurement of plasma choline in acute coronary syndrome: Importance of suitable sampling conditions for this assay // Sci. Rep. 2018. V. 8. № 1. P. 4725.
  23. 23. Fabresse N., Uteem I., Lamy E., Massy Z., Larabi I.A., Alvarez J.-C. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: Comparison of rapid equilibrium dialysis and ultrafiltration // Clin. Chim. Acta. 2020. V. 507. P. 228. https://doi.org/10.1016/j.cca.2020.04.032
  24. 24. Электронный ресурс Uremic Solutes Database / database.uremic-toxins.org (дата обращения 11.12.2023).
  25. 25. Garcia E., Shalaurova I., Matyus S.P., Wolak-Dinsmore J., Oskardmay D.N., Connelly M.A.. Quantification of choline in serum and plasma using a clinical nuclear magnetic resonance analyzer // Clin Chim Acta. 2022. V. 1. № 524. P. 106. https://doi.org/10.1016/j.cca.2021.11.031
  26. 26. Ilcol Y.O., Dilek K., Yurtkuran M., Ulus I. Changes of plasma free choline and choline-containing compounds’ concentrations and choline loss during hemodialysis in ESRD patients // Clin. Biochem. 2002. V. 35. № 3. P. 233. https://doi.org/10.1016/s0009-9120 (02)00298-9
  27. 27. Silva L.A.P., Campagnolo S., Fernandes S.R., Marques S.S., Barreiros L., Sampaio-Maia B. Segundo M.A. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples // Anal. Bioanal. Chem. 2023. V. 415. P. 683.
  28. 28. Calaf R., Cerini C., Genovesio C., Verhaeghe P., Jourde-Chiche N., Berge-Lefranc D. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay // J. Chromatogr. B. 2011. V. 879. № 23. P. 2281. https:// doi. org/10. 1016/j. jchro mb. 2011. 06. 014
  29. 29. Zhan X., Fletcher L., Huyben D., Cai H., Dingle S., Qi N., et al. Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts // Front. Nutr. 2023. V. 10. Article 1101519. https://doi.org/10.3389/fnut.2023.1101519
  30. 30. Awwad H.M., Kirsch S.H., Geise J., Obeid R. Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels // J. Chromatogr. B. 2014. V. 957. P. 41.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library