RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Microextraction-chromatographic determination of furan derivatives in transformer oil

PII
10.31857/S0044450224120072-1
DOI
10.31857/S0044450224120072
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 79 / Issue number 12
Pages
1348-1357
Abstract
An express and environmentally safe method has been developed for microextraction of furan derivatives from transformer oil for their determination by high-performance liquid chromatography with spectrophotometric detection in the ultraviolet region of the spectrum. Various hydrophilic eutectic solvents have been studied as extractants for the implementation of dispersion liquid-liquid microextraction with vortex dispersion. It was found that the highest values of the degree of extraction (from 85 to 96 %) are provided by a three-component eutectic solvent based on choline chloride, acetic acid and water. The rapid spontaneous phase separation made it possible to eliminate the centrifugation stage. Detection limits (3σ) from 1 to 5 micrograms/l have been reached.
Keywords
дисперсионная жидкостно-жидкостная микроэкстракция эвтектические растворители жидкостная хроматография фурановые производные трансформаторное масло
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Thiviyanathan V., Ker P., Leong Y., Abdullah F., Ismail A., Zaini Jamaludin Md. Power transformer insulation system: A review on the reactions, fault detection, challenges and future prospects // Alex. Eng. J. 2022. V. 61. P. 7597.
  2. 2. Cheim L., Platts D., Prevost T., Xu S. Furan analysis for liquid power transformers // IEEE Electr. Insul. Mag. 2012. V. 28. P. 8.
  3. 3. Kanumuri D., Sharma V., Rahi O. Analysis using various approaches for residual life estimation of power transformers // Int. J. Electr. Eng. 2019. V. 11. P. 389.
  4. 4. ASTM D5837-15 Standard Test Method for Furanic Compounds in Electrical Insulating Liquids by High-Performance Liquid Chromatography (HPLC).
  5. 5. ГОСТ Р МЭК 61198-2013 Масла изоляционные нефтяные. Методы определения 2-фурфурола и родственных соединений. М.: Стандартинформ, 2019. 12 с.
  6. 6. Wang Y., Li H., Yang Z., Zhang W., Hua J. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography // J. Sep. Sci. 2017. V. 40. P. 480.
  7. 7. СТО 56947007-29.180.010.009 Методические указания по определению содержания фурановых производных в трансформаторных маслах методом газовой хроматографии. М.: Стандартинформ, 2007. 26 с.
  8. 8. МКХА КН-01-12 (ФР.1.31.2015.21310) Методика количественного хроматографического анализа. Определение содержания фурановых производных и антиокислительной присадки ионол в энергетических маслах методом газожидкостной хроматографии. М.: Стандартинформ, 2012. 31 с.
  9. 9. Bosworth T., Setford S., Heywood R., Saini S. Pulsed amperometric detection of furan compounds in transformer oil // Anal. Chim. Acta. 2001. V. 450. P. 253.
  10. 10. Wang R., Huang X., Wang L. Facile electrochemical method and corresponding automated instrument for the detection of furfural in insulation oil // Talanta. 2016. V. 148. P. 412.
  11. 11. López-Lorente Á., Pena-Pereira F., Pedersen-Bjergaard S., Zuin V., Ozkan S., Psillakis E. The ten principles of green sample preparation // Trends Anal. Chem. 2022. V. 148. Article 116530.
  12. 12. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. Т. 76. № 8. С. 675. (Dmitrienko S., Apyari V., Tolmacheva V., Gorbunova M. Liquid–liquid extraction of organic compounds into a single drop of the extractant: Overview of reviews // J. Anal. Chem. 2021. V. 76. P. 907.)
  13. 13. Rutkowska M., Płotka-Wasylka J., Sajid M., Andruch V. Liquid–phase microextraction: A review of reviews // Microchem. J. 2019. V. 149. Article 103989.
  14. 14. Psillakis E. Vortex-assisted liquid-liquid microextraction revisited // Trends Anal. Chem. 2019. V. 113. P. 332.
  15. 15. Santana-Mayor Á., Rodríguez-Ramos R., Herrera-Herrera A., Socas-Rodríguez B., Rodríguez-Delgado M. Deep eutectic solvents. The new generation of green solvents in analytical chemistry // Trends Anal. Chem. 2021. V. 134. Article 116108.
  16. 16. Abbott A. Deep eutectic solvents and their application in electrochemistry // Curr. Opin. Green Sustain. Chem. 2022. V. 36. Article 100649.
  17. 17. Shishov A., Pochivalov A., Nugbienyo L., Andruch V., Bulatov A. Deep eutectic solvents are not only effective extractants // Trends Anal. Chem. 2020. V. 129. Article 115956.
  18. 18. Cui Y., Li C., Yin J., Li S., Jia Y., Bao M. Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride // J. Mol. Liq. 2017. V. 236. P. 338.
  19. 19. Kudłak B., Owczarek K., Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review // Environ. Sci. Pollut. Res. 2015. V. 22. P. 11975.
  20. 20. Shishov A., Bulatov A., Locatelli M., Carradori S., Andruch V. Application of deep eutectic solvents in analytical chemistry. A review // Microchem. J. 2017. V. 135. P. 33.
  21. 21. Martin Y. Exploring QSAR: Hydrophobic, electronic, and steric constants // J. Med. Chem. 1996. V. 39. P. 1189.
  22. 22. Omar K., Sadeghi R. Database of deep eutectic solvents and their physical properties: A review // J. Mol. Liq. 2023. V. 384. Article 121899.
  23. 23. Unsworth J., Mitchell F. Degradation of electrical insulating paper monitored with high performance liquid chromatography // IEEE Trans. Electr. Insul. 1990. V. 25. P. 737.
  24. 24. Shishov A., Savinov S., Volodina N., Gurev I., Bulatov A. Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES // Microchem. J. 2022. V. 179. Article 107456.
  25. 25. Vilková M., Płotka-Wasylka J., Andruch V. The role of water in deep eutectic solvent-base extraction // J. Mol. Liq. 2020. V. 304. Article 112747.
  26. 26. Chromá R., Vilková M., Shepa I., Makoś-Chełstowska P., Andruch V. Investigation of tetrabutylammonium bromide-glycerol-based deep eutectic solvents and their mixtures with water by spectroscopic techniques // J. Mol. Liq. 2021. V. 330. Article 115617. https://doi.org/10.1016/j.molliq.2021.115617
  27. 27. Barwick V. Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An Aid to Accreditation. ISBN 978-0-948926-32-7. www.eurachem.org (01.06.2024)
  28. 28. Taverniers I., De Loose M., Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance // Trends Anal. Chem. 2004. V. 23. P. 535.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library