RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

DETERMINATION OF CARBON IN CARBONATE-SILICATE GLASSES BY X-RAY SPECTRAL MICROANALYSIS

PII
S3034512X25110035-1
DOI
10.7868/S3034512X25110035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 11
Pages
1155-1162
Abstract
A method for determining carbon content in carbonate-aluminosilicate glasses using X-ray spectral microanalysis has been proposed and implemented. To account for the contribution of the non-useful signal from the conductive carbon layer and carbon deposits formed under the electron probe to the analytical signal of the CKα line, a calibration curve was constructed using carbonate standard samples with varying carbon content. The analytical signal was based on the calculated area under the first peak of the CKα line, which allowed consideration of the influence of chemical bonds formed by carbon with oxygen and other elements on the shape and position of the CKα line. Optimal conditions for recording X-ray spectra in the CKα line region were selected for subsequent carbon determination. Linear calibrations obtained at 5 kV using carbonate standards are highly reproducible, with a relative standard deviation (s) of analytical signal values ranging from 1–3%. The calculated detection limits for carbon using the developed method are 0.2–0.4 wt.%, with the lower limit of quantifiable content being 0.6–1.2 wt.%.
Keywords
PCMA углерод градуировка карбонатные стандартные образцы карбонатно-алломосиликатные стекла
Date of publication
01.11.2025
Year of publication
2025
Number of purchasers
0
Views
41

References

  1. 1. Morizet Y., Brooker R.A., Iacono-Marziano G., and Kjarsgaard B.A. Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy // Am. Mineral. 2013. V. 98. P. 1788. https://doi.org/10.2138/am.2013.4516
  2. 2. Ni H., Keppler H. Carbon in silicate melts // Rev. Mineral. Geochem. 2013. V. 75. P. 251. https://doi.org/10.2138/rmg.2013.75.9
  3. 3. Shimizu K., Ushikubo T., Hamada M., Itoh S., Higashi Y., Takahashi E., Ito M. H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses using SIMS: Report of volatile standard glasses // Geochem. J. 2017. V. 51. P. 299. https://doi.org/10.2343/geochemj.2.0470
  4. 4. Mysen B.O. and Richet P. Silicate Glasses and Melts: Properties and Structure. Elsevier, 2019. 708 p.
  5. 5. Schanofski M., Koch L., Schmidt B.C. CO2 quantification in silicate glasses using µ-ATR FTIR spectroscopy // Am. Mineral. 2023. V. 108. P. 1346. https://doi.org/10.2138/am-2022-8477
  6. 6. Hauri E., Wang J., Dixon J.E., King P.L., Mandeville C., Newman S. SIMS analysis of volatiles in silicate glasses. Calibration, matrix effects and comparisons with FTIR // Chem. Geol. 2002. V. 183. P. 99.
  7. 7. Сафонов О.Г., Ширяев А.А., Тюрнина А.В., Хутвелкер Т. Структурные особенности продуктов закалки расплавов в хлоридно-карбонатно-силикатных системах по данным колебательной и рентгеновской спектроскопии // Петрология. 2017. Т. 25. № 1. С. 26. https://doi.org/10.7868/S0869590316060054
  8. 8. Moussallam Y., Towbin W.H., Plank T., Bureau H., Khodja H., Guan Y., Ma C., Baker M. B., Stolper E. M., Naab F. U., Monteleone B. D., Gaetani G. A., Shimizu K., Ushikubo T., Lee H. J., Ding Sh., Shi S., Rose-Koga E. F. ND70 Series basaltic glass reference materials for volatile element (H2O, CO2, S, Cl, F) measurement and the C ionisation efficiency suppression effect of water in silicate glasses in SIMS // Geostand. Geoanal. Res. 2024. V. 48. P. 637. https://doi.org/10.1111/ggr.12572
  9. 9. Bastin G.F., Heijligers H J.M. Quantitative electron probe microanalysis of carbon in binary carbides // X-ray Spectrom. 1986. V. 15. P. 135. https://doi.org/10.1002/xrs.1300150212
  10. 10. Практическая растровая электронная микроскопия / Под ред. Гоулдстейна Дж., Яковица Х. М.: Мир, 1978. 656 с.
  11. 11. Goldstein J.I., Newbury D.E., Echlin P. Joy D.C., Lyman C.E., Lifshin E., Sawyer L., Michael J. R. Scanning Electron Microscopy and X-Ray Microanalysis. USA: Springer Science, 2008. 690 p.
  12. 12. Куликова И.М., Набелкин О.А. Определение легких элементов C, N, O в различных минералах и синтетических соединениях методом рентгеноспектрального микроанализа // Заводск. лаборатория. Диагностика материалов. 2019. Т. 85. № 3. С. 5. https://doi.org/10.26896/1028-6861-2019-85-3-5-13
  13. 13. Кузин А.Ю., Куприянова Т.А., Тодуа П.А., Филиппов М.Н., Швындина Н.В., Шкловер В.Я. Электронно-зондовое определение углерода в условиях образования пленки поверхностных загрязнений // Метрология. 2012. № 11. С. 24.
  14. 14. Armstrong J.T., Donovan J.J., Carpenter P.C. CALCZAF, TRYZAF and CITZAF: The use of multi-correction-algorithm programs for estimating uncertainties and improving quantitative X-ray analysis of difficult specimens // Microsc. Microanal. 2013. V. 19 P. 812. https://doi.org/10.1017/S1431927613006053
  15. 15. Donovan J.J. (2015) CalcZAF: EPMA calculation utility. https://github.com/ openmicroanalysis/calczaf
  16. 16. Дерффель К. Статистика в аналитической химии. М.: Мир, 1994. 268 с.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library