RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

PHYTOCHEMICAL ANALYSIS OF EXTRACTS FROM SEVERAL PLANTS GROWING IN RUSSIA USING DEEP EUTECTIC SOLVENTS

PII
S3034512X25110039-1
DOI
10.7868/S3034512X25110039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 11
Pages
1141-1153
Abstract
Medicinal plants are an important source of biologically active compounds used in medicine for the prevention and treatment of various diseases. The main classes of such compounds—alkaloids, glycosides, flavonoids, essential oils, tannins, polyphenols, and polysaccharides—exhibit a wide range of pharmacological activities (antimicrobial, anti-inflammatory, antiseptic, antioxidant, etc.). Phytochemical screening of plant extracts is essential for identifying these compounds and developing new highly active therapeutic agents. Spectrophotometric phytochemical screening was conducted for alkaloids, tannins, flavonoids, phenolic compounds, steroidal cardiac glycosides, and polysaccharides, along with the determination of antioxidant activity in extracts of three medicinal plants from different families: milky ripe oats (Avena sativa L.), madder root (Rubia tinctorum L.), and common heather (Calluna vulgaris L.). High-performance liquid chromatography was employed for a more detailed analysis of the extracts. Both traditional solvents (methanol, ethanol, water-ethanol mixture, water, acetonitrile) and a new class of solvents—deep eutectic solvents—were used as extractants. Extraction of biologically active compounds was performed using ultrasound at 40–80 °C for 10–60 minutes. Optimal extraction conditions for the main compound groups were established: 80 °C and 60 minutes for traditional solvents; 50°C for 30 minutes (heather) and 60°C for 30 minutes (madder root and oats) when using deep eutectic solvents. Deep eutectic solvents enable the extraction of target bioactive compounds under milder conditions, demonstrating their potential as environmentally friendly extractants in phytochemical studies.
Keywords
биологически активные вещества Array Array Array спектрофотометрия хроматография глубокие эвтектические растворители
Date of publication
01.11.2025
Year of publication
2025
Number of purchasers
0
Views
58

References

  1. 1. Tsvetov N., Paukshta O., Fokina N., Volodina N., Samarov A. Application of natural deep eutectic solvents for extraction of bioactive components from Rhodiola rosea (L.) // Molecules. 2023. V. 28. № 2. P. 912. https://doi.org/10.3390/molecules28020912
  2. 2. Koigerova A., Gosteva A., Samarov A., Tsvetov N. Deep eutectic solvents based on carboxylic acids and glycerol or propylene glycol as green media for extraction of bioactive substances from Chamaenerion angustifolium (L.) Scop. // Molecules. 2023. V. 28. № 19. P. 6978. https://doi.org/10.3390/molecules28196978
  3. 3. Azmir J. Techniques for extraction of bioactive compounds from plant materials: A review // J. Food Eng. 2013. V. 117. № 4. P. 426. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  4. 4. Ivanović M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material // Plants. 2020. V. 9. № 11. P. 1428. https://doi.org/10.3390/plants9111428
  5. 5. Бессонова Е.А., Карпицкий Д.А., Карцова Л.А. Современные подходы к извлечению и концентрированию биологически активных веществ из растительных объектов с применением методов микроэкстракции для их хромато-масс-спектрометрического определения // Журн. аналит. химии. 2023. Т. 78. № 10. С. 883
  6. 6. Bessonova E., Karpitskii D., Kartsova L. Modern approaches to the extraction and preconcentration of biologically active compounds from plant samples by microextraction methods for their determination by chromatography–mass spectrometry // J. Anal. Chem. 2023. V. 78. P. 1295.
  7. 7. Назарова Д.В., Темердашев З.А., Виницкая Е.А., Киселева Н.В., Нагалевский М.В. Сравнительный анализ химического состава экстрактов из образцов растений рода MENTHA L. После гидродистилляции и субкритической экстракции методом газовой хромато-масс-спектрометрии // Журн. аналит. химии. 2023. Т. 78. № 9. С. 837
  8. 8. Nazarova D., Temerdashev Z., Vinitskaya E., Kiseleva N., Nagalevskii M. Comparative analysis of chemical compositions of mentha l. plant extracts by gas chromatography–mass spectrometry after hydrodistillation and subcritical extraction // J. Anal. Chem. 2023. V. 78. P. 1174.
  9. 9. Kozhevnikova A., Lobovich D., Milevskii N., Fedulov I., Zakhodyaeva Y., Voshkin A. Kinetics and reusability of hydrophobic eutectic solvents in continuous extraction processes in a pilot setting // Processes. 2024. V. 12. № 12. P. 2879. doi.org/10.3390/pr12122879
  10. 10. Zinov’eva I., Chikineva T., Zakhodyaeva Y., Voshkin Bis(2,4,4-trimethylpentyl)phosphinic acid/ phenol deep eutectic solvent: Physicochemical properties and application prospects for the extraction of trivalent rare earth elements // J. Mol. Liq. 2025. V. 423. Article 126984 doi.org/10.1016/j.molliq.2025.126984
  11. 11. Lanjwani M., Tuzen M., Khuhawar M., Mogaddam M., Farajzadeh M. Deep eutectic solvents for extraction and preconcentration of organic and inorganic species in water and food samples: A review // Crit. Rev. Anal. Chem. 2024. V. 54. № 5. P. 1290. https://doi.org/10.1080/10408347.2022.2111655
  12. 12. Hosseininezhad B., Nemati M., Farajzadeh M., Khosrowshahi E., Mogaddam M. Deep eutectic solvent applications in sample preparation of different analytes before gas and liquid chromatography instruments coupled with mass spectrometry and tandem mass spectrometry // TrAC, Trends Anal. Chem. 2023. V. 169. Article 117346. https://doi.org/10.1016/j.trac.2023.117346
  13. 13. Panche A. N. Flavonoids: Аn overview // J. Nutr. Sci. 2016. V. 5. P. 47. https://doi.org/10.1017/jns.2016.41
  14. 14. Якупова Э.Н., Зиятдинова Г.К. Современные методы и направления развития аналитической химии флаванонов // Журн. аналит. химии. 2023. Т. 78. № 4. С. 291
  15. 15. Yakupova E. N., Ziyatdinova G. K. Modern methods and current trends in the analytical chemistry of flavanones // J. Anal. Chem. 2023. V. 78. P. 403. https://doi.org/10.1134/S1061934823040159
  16. 16. Munawar A. Natural polyphenols: An overview // Int. J. Food Prop. 2016. V. 20. № 8. P. 1689. https://doi.org/10.1080/10942912.2016.1220393
  17. 17. Calderon-Montano J. M. Evaluating the cancer therapeutic potential of cardiac glycosides // BioMed Res. Int. 2014. Article 794930. https://doi.org/10.1155/2014/794930
  18. 18. Bribi N. Pharmacological activity of alkaloids: A review // Asian J. Bot. 2018. V. 1. P. 467. https://doi.org/10.63019/ajb.v1i2.467
  19. 19. Baştemur G., Akpınar R., Kır E., Ozkorucuklu S. Development and validation of the HPLC-DAD method for the simultaneous determination of anthraquinones in Rumex crispus L. and Rumex acetosella L. plants and evaluation of their antioxidant capacities // J. Anal. Chem. 2024. V. 79. P. 180.
  20. 20. Ling C., Gangliang H. Antitumor activity of polysaccharides: an overview // Current Drug Targets. 2018. V. 19. № 1. P. 89. https://doi.org/10.2174/1389450118666170704143018
  21. 21. Shaikh J.R., Patil M.K. Qualitative tests for preliminary phytochemical screening: An overview // Int. J. Chem. Stud. 2020. V. 8. № 2. P. 603. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  22. 22. Mursaliyeva V. K. Total content of saponins, phenols and flavonoids and antioxidant and antimicrobial activity of in vitro culture of Allochrusa gypsophiloides (Regel) Schischk compared to wild plants // Plants. 2023. V. 12. P. 3521. https://doi.org/10.3390/plants12203521
  23. 23. Sohch P. Spectrophotometric determination of cardiac glycosides by flow-injection analysis // Anal. Chim. Acta. 1992. V. 269 P. 199.
  24. 24. Le Trung Khoang, Hoang Thi Thu Huyen, Huynh Van Chung, Le Xuan Duy, Tran Quoc Toan, Hoang Thi Bich, Pham Thi Hong Minh, Dung Thuy Nguyen Pham, Tran Thien Hien. Optimization of total saponin extraction from Polyscias fruticosa roots using the ultrasonic-assisted method and response surface methodology // Processes. 2022. V. 10. P. 2034. https://doi.org/10.3390/pr10102034
  25. 25. Shamsa F. Spectrophotometric determination of total alkaloids in some Iranian medicinal plants // Thai J. Pharm. Sci. 2008. V. 32. P. 17.
  26. 26. Кахраманова С. Д., Боков Д. О., Самылина И. А. Количественное определение полисахаридов в лекарственном растительном сырье // Фармация. 2020. Т. 69. № 8. С. 5. https://doi.org/10/29296/25419218-2020-08-01
  27. 27. Owades J. L., Rubin G., Brenner M.W. Food tannins measurement, determination of food tannins by ultraviolet spectrophotometry // J. Agric. Food Chem. 1958. V. 6. P 44. https://doi.org/10.1021/jf60083a008
  28. 28. Baliyan S., Mukherjee R., Priyadarshini A. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiose // Molecules. 2022. V. 27. P. 1326. https://doi.org/10.3390/molecules27041326
  29. 29. Paudel D. A review of health-beneficial properties of oats // Foods. 2021. V. 10. P. 2591. https://doi.org/10.3390/foods10112591
  30. 30. Zohra H. F. Biological activities and chemical composition of Rubia tinctorum (L.) root and aerial part extracts thereof // Acta Biol. Colomb. 2022. V. 27. P. 403. https://doi.org/10.15446/abc.v27n3.95476
  31. 31. Cucu A. A., Baci GM, Cucu A. B. Calluna vulgaris as a valuable source of bioactive compounds: Exploring its phytochemical profile, biological activities and apitherapeutic potential // Plants (Basel). 2022. V. 11. № 15. P. 1993. https://doi.org/10.3390/plants11151993
  32. 32. Ghareeb D. Evaluation of the anti-fusarium effect of Cinnamoum zeilanicum, Berberise vulgaris and Calluna vulgaris ethanolic extracts // J. Cancer. 2020. V. 4. P. 143.
  33. 33. Mandim F., Barros L., Heleno S. A. Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria // Food Funct. 2019. V. 10. № 5. P. 2399. https://doi.org/10.1039/c9fo00415g
  34. 34. Rodrigues F. The phytochemical and bioactivity profiles of wild Calluna vulgaris L. flowers // Food Res. Int. 2018. V. 111. P. 724. https://doi.org/10.1016/j.foodres.2018.06.012
  35. 35. Общая фармакопейная статья (ОФС) ОФС.1.1.0011.15 Хранение лекарственного растительного сырья и лекарственных растительных препаратов. Государственная фармакопея Российской Федерации XV издания. Приказ Минздрава России от 20.07.2023. № 377.
  36. 36. Общая фармакопейная статья (ОФС) ОФС.1.5.3.0007.15 Определение влажности лекарственного растительного сырья // Государственная фармакопея Российской Федерации XIII издания. Приказ Минздрава России от 29.10.2015. № 771.
  37. 37. Han M. Advancing green extraction of bioactive compounds using deep eutectic solvent-based ultrasoundassisted matrix solid-phase dispersion: Application to UHPLC-PAD analysis of alkaloids and organic acids in Coptidis rhizome // Talanta. 2024. V. 274. Article 125983. https://doi.org/10.1016/j.talanta.2024.125983
  38. 38. Zhang X. A green method of extracting and recovering flavonoids from Acanthopanax senticosus using deep eutectic solvents // Molecules. 2022. V. 27. P. 923. https://doi.org/10.3390/molecules27030923
  39. 39. Tsvetov N., Paukshta O. Application of natural deep eutectic solvents for extraction of bioactive components from Rhodiola rosea (L.) // Molecules. 2023. V. 28. P. 912. https://doi.org/10.3390/molecules28020912
  40. 40. Amerizadeh A. Effect of oat (Avena sativa L.) consumption on lipid profile with focus on triglycerides and high-density lipoprotein cholesterol (HDL-C): An updated systematic review // Curr. Probl. Cardiol. 2023. V. 48. № 7. Article 101153. https://doi.org/10.1016/j.cpcardiol.2022.101153
  41. 41. Russo P., de Chiara M. Lactobacillus plantarum strains for multifunctional oat-based foods LWT // Food Sci. Technol. 2016. V. 68. P. 288.
  42. 42. Kaunaite V. Phytochemical diversity and antioxidant potential of wild heather (Calluna vulgaris L.) aboveground parts // Plants (Basel). 2022. V. 11. № 17. P. 2207. https://doi.org/10.3390/plants11172207
  43. 43. Yuan X. Efficient short extraction and purification procedures of kinsenoside from Anoectochilus roxburghii with deep eutectic solvent by column chromatographic extraction // Ind. Crops Prod. 2022. V. 182. Article 114866. https://doi.org/10.1016/j.indcrop.2022.114866
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library