RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

CHALLENGES AND FEATURES OF POLYSACCHARIDE VISUALIZATION IN SORBENT LAYERS DURING PLANAR CHROMATOGRAPHY

PII
S3034512X25110043-1
DOI
10.7868/S3034512X25110043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 11
Pages
1163-1174
Abstract
The features of planar (thin-layer) chromatography of several linear non-ionic polysaccharides (amylose, pullulan), their visualization by post-chromatographic derivatization with iodine, and the factors influencing this process are described. It is shown that the coloration of pullulan results from the formation of pseudoclathrate complexes of molecular iodine–iodide–pullulan in short helical segments of the polysaccharide, as well as iodine absorption in the bends of the polymer chain. It was established that the shift of the spectral absorption maximum of amylose (λ ~ 600 nm, blue coloration) to the shorter wavelength region (λ = 560 nm, red-brown coloration) is associated with specific interactions of starch with silica and the formation of a molecular iodine–iodide-anion–amylose–silica gel complex. It was demonstrated that the intensity of iodine staining of high-molecular-weight polysaccharides does not depend on their degree of polymerization, and polysaccharide visualization by the iodine reaction in thin-layer chromatography is possible only on neutral forms of silica sorbents.
Keywords
тонкослойная хроматография силикагель полисахариды пуллулан амилоза полийодид клатратные комплексы
Date of publication
01.11.2025
Year of publication
2025
Number of purchasers
0
Views
38

References

  1. 1. Kooyk Y., Rabinovich G.A. Protein-glycan interactions in the control of innate and adaptive immune responses // Nat. Immunol. 2008. V. 9. № 6. P. 593. https://doi.org/10.1038/ni.f.203
  2. 2. Lepenies В., Yin J., Seeberger Р.Н. Applications of synthetic carbohydrates to chemical biology // Curr. Opin. Chem. Biol. 2010. V. 14. P. 404. https://doi.org/10.1016/j.cbpa.2010.02.016
  3. 3. Venkatesan J., Lowe B., Anil S., Venkatesan J., Lowe B., Anil S., Manivasagan P., Kheraif A.A.A., Kang K.H., Kim S.K. Seaweed polysaccharides and their potential biomedical applications // Starch‐ Starke. 2015. V. 67. № 5-6. P. 381. http://dx.doi.org/10.1002/star.201400127
  4. 4. Aliev W.R., Mann B.F., Novotny M.V. High-sensitivity analytical approaches for the structural characterization of glycoproteins // Chem. Rev. 2013. V. 113. P. 2668. https://doi.org/10.1021/cr3003714
  5. 5. Душкин А.В., Метелева Е.С., Чистяченко Ю.С., Поляков Н.Э. Химические трансформации и молекулярная динамика полисахаридов и их межмолекулярных комплексов с лекарственными веществами в растворах и твердых фазах // Фундаментальные исследования. 2013. № 1-3. С. 789.
  6. 6. Оводов Ю.С. Современные представления о пектиновых веществах // Биоорганическая химия. 2009. Т. 35. № 3. С. 293.
  7. 7. Красиков В.Д., Малахова И.И., Сантурян Ю.Г., Панарин Е.Ф. Планарная хроматография – метод аналитического контроля композитных фармацевтических препаратов на основе N-виниламидов // Журн. аналит. химии. 2023. Т. 78. № 11. С. 1019. https://doi.org/10.31857/S0044450223110099
  8. 8. Krasikov V.D., Malakhova I.I., Santuryan Y.G., Panarin E.F. Planar chromatography as a method for the analytical control of composite pharmaceutical preparations based on N-vinylamides // J. Anal. Chem. 2023. V. 78. № 11. P.1537. https://doi.org/10.1134/S1061934823110047
  9. 9. Гейсс Ф. Основы тонкослойной хроматографии (Планарная хроматография). Пер. с англ. Под ред. Березкина В.Г. М., 1999. Т. 1. 405 с., Т. 2. 348 с.
  10. 10. Spangenberg B., Poole C.F., Weins Ch. Quantitative thin-layer chromatography. A practical survey. Heidelberg: Springer. 2011. 388 p. https://doi.org/10.1007/978-3-642-10729-0
  11. 11. Саканян К.М., Гаккель В.А., Малахова И.И., Красиков В.Д., Сокольская Т.А., Захаров В.И. Изучение состава моносахаридов полисахаридных комплексов фукуса пузырчатого Fucus vesiculosus L. и селеницереуса крупноцветкового Selenicereus grandiflorus (L.) Britten et Rose // Вопросы биологической, медицинской и фармацевтической химии. 2009. № 5. С. 44.
  12. 12. Дудкина М.М., Котельникова Н.Е., Ганкина Э.С., Малахова И.И., Петропавловский Г.А. Применение тонкослойной хроматографии для определения сахаров в микрокристаллической целлюлозе // Химия природных соединений. 1988. № 3. C. 869.
  13. 13. Reiffova K. Analysis of food bioactive oligosaccharides by thin-layer chromatography / Food Oligosaccharides: Production, Analysis and Bioactivity. 2014. P. 350. https://doi.org/10.1016/j.chroma.2006.01.039
  14. 14. Doner L.W., Biller L.M. High-performance thin-layer chromatographic separation of sugars: preparation and application of aminopropyl bonded-phase silica plates impregnated with monosodium phosphate // J. Chromatogr. A. 1984. V. 287. P. 391. https://doi.org/10.1016/S0021-9673 (01)87716-5
  15. 15. Lee K.Y., Nuro, D., Zlatkis A. Determination of glucose, fructose and sucrose in molasses by high-performance thinlayer chromatography // J. Chromatogr. 1979. V. 174. № 1. P. 187. https://doi.org/10.1016/S0021-9673 (00)87049-1
  16. 16. Martinez-Castro I., Olano A. Ready detection of small amounts of lactulose in dairy products by thin-layer chromatography // Chromatographia. 1981. V. 14. № 11. P. 621. https://doi.org/10.1007/bf02291098
  17. 17. Damonte A., Lombard A., Tourn L.M., Cassone M.C. A modified solvent system and multiple detection technique for the separation and identification of mono- and oligosaccharides on cellulose thin layers // J. Chromatogr. A. 1971. V. 60. P. 203. https://doi.org/10.1016/S0021-9673 (00)95551-1
  18. 18. Hoton-Dorge M. Separation des aldoses et des polysaccharides par chromatographie en couche mince de cellulose et nouveau reactif de pulverisation permettant leur revelation sensible // J. Chromatogr. A. 1976. V. 116. № 2. P. 417. https://doi.org/10.1016/s0021-9673 (00)89911-2
  19. 19. Cockburn D., Koropatkin N. Product analysis of starch active enzymes by TLC // Bio-protocol. 2015. V. 5. № 20. P. e1621. http://doi.org/10.21769/BioProtoc.1621
  20. 20. Zhang Z., Xiao Z., Linhardt R. J. Thin layer chromatography for the separation and analysis of acidic carbohydrates // J. Liq. Chromatogr. Relat. Technol. 2009. V. 32 № 11–12. P. 1711. https://doi.org/10.1080/10826070902956402
  21. 21. Pop C.R., Ancuţa M.R., Liana C.S., Sindic M. Fingerprint profiling of polysaccharide kefiran extracted from kefir grains biomass // J. Agroaliment. Processes Technol. 2015. V. 21. № 2. P. 207.
  22. 22. Шталь Э. Хроматография в тонких слоях. М.: Мир, 1965. 508 с.
  23. 23. Кирхнер Ю. Тонкослойная хроматография. В 2-х тт. Пер. с англ. М: Мир, 1981. 616 с.
  24. 24. Schacht E., Ruys L., Vermeersch J., Remon J.P., Duncan R. Dextran and inulin derivatives of procainamide // Ann. N. Y. Acad. Sci. 1985. V. 446. № 1. P. 199. https://doi.org/10.1111/j.1749-6632.1985.tb18401.x
  25. 25. Sherma, J., Fried B. Handbook of Thin-Layer Chromatography. CRC Press, 2003. P. 1048. https://doi.org/10.1201/9780203912430
  26. 26. Мохнач В.О. Йод и проблемы жизни. Теория биологической активности йода и проблемы практического применения соединений йода с высокополимерами. Л.: Наука, 1974. 254 с.
  27. 27. Bele A.A., Khale A. An overview on thin layer chromatography // Int. J. Pharm. Sci. Res. 2011. V. 2. № 2. P. 256. http://dx.doi.org/10.13040/IJPSR.0975-8232.2 (2).256-67
  28. 28. Isenberg I.H. Pulp and Paper Microscopy. 3rd Ed. Appleton, Wisconsin: The Institute of Paper Chemistry, 1967. 395 p.
  29. 29. Rundle R.E. The configuration of starch in the starch-iodine complex. V. Fourier projections from X-ray diagrams // J. Am. Chem. Soc. 1947. V. 69. № 7. P. 1769. https://doi.org/10.1021/ja01199a054
  30. 30. Yang J, Sato T. Conformation of pullulan in aqueous solution studied by small-angle X-ray scattering // Polymers. 2020. V. 12. № 6. P. 1266. https://doi.org/10.3390/polym12061266
  31. 31. Савинкина Е.В., Козлова И.А., Палкина К.К. Структурные перестройки водных растворов при кристаллизации комплексных полииодидов переходных элементов / Тезисы докладов IX Международной конференции “Проблемы сольватации и комплексообразования в растворе”. Плес. 2004. С. 154.
  32. 32. Thoma J.A., French D. Studies on the Schardinger dextrins. X. The interaction of cyclohexaamylose, iodine and iodide. Part I. Spectrophotometric studies // J. Am. Chem. Soc. 1958. V. 80. 22. P. 6142. https://doi.org/10.1021/ja01555a060
  33. 33. Reddy, J. M.; Knox, K.; Robin, M. B. Crystal structure of HI3·2C6H5CONH2: A model of the starch-iodine complex // J. Chem. Phys. 1964. 40 № 4. P. 1082. https://doi.org/10.1063/1.1725252
  34. 34. Pesek S., Silaghi-Dumitrescu R. The iodine/iodide/ starch supramolecular complex // Molecules. 2024. V. 29. P. 641. https://doi.org/10.3390/molecules29030641
  35. 35. Gilbert G.A, Marriott J.V.R. Starch-iodine complexes. Part I. Trans. // Faraday Soc. 1948. V. 44. P. 84. https://doi.org/10.1039/TF9484400084
  36. 36. Yajima H.; Nishimura T.; Ishii T.; Handa T. Effect of concentration of iodide on the bound species of I2/I– 3 in the amylose-iodine complex // Carbohydr. Res. 1987. V. 163. № 2. P. 155. https://doi.org/10.1016/0008-6215 (87)80179-9
  37. 37. Knutson C.A., Cluskey J.E., Dintzis F.R. Properties of amylose-Iodine complexes prepared in the presence of excess iodine // Carbohydr. Res. 1982. V. 101. № 1. P. 117. https://doi.org/10.1016/S0008-6215 (00)80800-9
  38. 38. Saenger W. The structure of the blue starch-iodine complex // Naturwissenschaften. 1984. V. 71. № 1. P. 31. https://doi.org/10.1007/BF00365977
  39. 39. Fonslick J., Khan A. Thermal stability and composition of the amylose–iodine complex // J. Polym. Sci. A Polym. Chem. 1989, V. 27. № 12. P. 4161. https://doi.org/10.1002/pola.1989.080271222
  40. 40. Yu X., Houtman C., Atalla R. H. The complex of amylose and iodine // Carbohydr. Res. 1996. V. 292. P. 129. https://doi.org/10.1016/S0008-6215 (96)91037-X
  41. 41. Prajapati V.D., Jani G.K., Khanda S.M. Pullulan: An exopolysaccharide and its various applications // Carbohydr. Polym. 2013. V. 95. P. 540. https://doi.org/10.1016/j.carbpol.2013.02.082
  42. 42. Singh R.S., Kaur N.; Rana V., Kennedy J.F. Pullulan: A novel molecule for biomedical applications // Carbohydr. Polym. 2017. V. 171. P. 102. https://doi.org/10.1016/j.carbpol.2017.04.089
  43. 43. Sasaki Y., Akiyoshi K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications // Chem. Rec. 2010. V. 10. P. 366. https://doi.org/10.1002/tcr.201000008
  44. 44. Liu J.H.-Y., Brant D.A., KitAmura S., Kajiwara K., Mimura M. Equilibrium spatial distribution of aqueous pullulan: Small-angle x-ray scattering and realistic computer modeling // Macromolecules. 1999. V. 32. P. 8611. http://dx.doi.org/10.1021/ma990591h
  45. 45. Jaud S., Tobias D.J., Brant D.A. Molecular dynamics simulations of aqueous pullulan oligomers // Biomacromolecules. 2005. V. 6. P. 1239. https://doi.org/10.1021/bm049463d
  46. 46. Buliga G.S., Brant D.A. Theoretical interpretation of the unperturbed aqueous solution configuration of pullulan // Int. J. Biol. Macromol. 1987. V. 9. P. 77. http://dx.doi.org/10.1016/0141-8130 (87)90030-4
  47. 47. Bruneel D., Schacht E. Chemical modification of pullulan: 1. Periodate oxidation // Polymer. 1993. V. 34. № 12. P. 2628. https://doi.org/10.1016/0032-3861 (93)90600-F
  48. 48. Nypelo T., Berke B., Spirk S., Sirvio J.A. Periodate oxidation of wood polysaccharides – Modulation of hierarchies // Carbohydr. Polym. 2021. V. 252. Article 117105. https://doi.org/10.1016/j.carbpol.2020.117105
  49. 49. Breugst M., Heiden D. Mechanisms in iodine catalysis // Chem. – Eur. J. 2018. V. 24. № 37. P. 9187. https://doi.org/10.1002/chem.201706136
  50. 50. Adachi M., Eguchi W., Tohdo F., Yoneda M. Reactions of iodine in aqueous solutions containing sodium hydroxide // J. Chem. Eng. Jpn. 1974. V. 7. № 5. P. 360. https://doi.org/10.1252/jcej.7.360
  51. 51. Thoma J.A., French D. The starch-iodine-iodide interaction. Part II. Potentiometric investigations // J. Phys. Chem. 1961. V. 65. № 10. P. 1825. https://doi.org/10.1021/j100827a032
  52. 52. Buliga G.S., Brant D.A. Temperature and molecular weight dependence of the unperturbed dimensions of aqueous pullulan // Int. J. Biol. Macromol. 1987. V. 9. № 2. P. 71. http://dx.doi.org/10.1016/0141-8130 (87)90029-8
  53. 53. Ring S.G., L’Anson K.J., Morris V.J. Static and dynamic light scattering studies of amylose solutions // Macromolecules. 1985. V. 18. № 2. P. 182. http://dx.doi.org/10.1021/ma00144a013
  54. 54. Banks W., Greenwood C.T. The conformation of amylose in neutral, aqueous salt solution // Carbohydr. Res. 1968. V. 7. № 3. P. 349. http://dx.doi.org/10.1016/S0008-6215 (00)81207-0
  55. 55. Nakanishi Y., Norisuye T., Teramoto A., Kitamura S. Conformation of amylose in dimethyl sulfoxide // Macromolecules. 1993. V. 26. № 16. P. 4220. http://dx.doi.org/10.1021/ma00068a023
  56. 56. Fujii M., Nagasaka K., Shimada J., Yamakawa H. The model parameters of helical wormlike chains // Macromolecules. 1983. V. 16. № 10. P. 1613. http://dx.doi.org/10.1021/ma00244a012
  57. 57. Yamamoto M., Sano T., Yasunaga T. Interaction of amylose with Iodine. I. Characterization of cooperative binding isotherms for amyloses // Bull. Chem. Soc. Jpn. 1982. V. 55. № 6. P. 1886. https://doi.org/10.1246/bcsj.55.1886
  58. 58. Nguyen Q. T., Aptel P., Neel J. Investigation of the amylose-lodine complexation in aqueous solution by ultrafiltration // Biopolymers. 1976. V. 15. P. 2097. https://doi.org/10.1002/bip.1976.360151016
  59. 59. Senior M. B., Hamori E. Investigation of the effect of amylose/iodine complexation on the conformation of amylose in aqueous solution // Biopolymers. 1973. V. 12. № 1. P. 65. https://doi.org/10.1002/bip.1973.360120107
  60. 60. Moulay S. Molecular iodine/polymer complexes // J. Polym. Eng. 2013 V. 33. № 5. P. 389. http://dx.doi.org/10.1515/polyeng-2012-0122
  61. 61. Guzenko N.V., Voronina O.E., Vlasova N.N., Voronin E.F. Absorption of iodine on the surface of silica modified by polyvinylpyrrolidone and albumin // J. Appl. Spectrosc. 2004. V. 71. P. 151. http://dx.doi.org/10.1023/B:JAPS.0000032868.98836.4d
  62. 62. Pushpamalar V., Langford S.J., Ahmad M., Lim Y.Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste // Carbohydr. Polym. 2006. V. 64. № 2. P. 312. https://doi.org/10.1016/J.CARBPOL.2005.12.003
  63. 63. Tan L., Kong L. Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion // Crit. Rev. Food Sci. Nutr. 2020. V. 60. № 5. P. 780. https://doi.org/10.1080/10408398.2018.1550739
  64. 64. Mould D.L. Potentiometric and spectrophotometric studies of complexes of hydrolysis products of amylose with iodine and potassium iodide // Biochem. J. 1954. V. 58. № 4. P. 593. https://doi.org/10.1042/bj0580593
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library