RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

DETERMINATION OF FORMALDEHYDE, GLYOXAL, GLUTARALDEHYDE, AND o-PHTHALALDEHYDE IN THE PRESENCE OF EACH OTHER IN DISINFECTANTS USING 2,4-DINTROPHENYLHYDRAZINE

PII
S3034512X25120032-1
DOI
10.7868/S3034512X25120032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 12
Pages
1311-1318
Abstract
Dialdehydes are predominantly used as disinfectants because these compounds exhibit a broad spectrum of antimicrobial activity. Among monoaldehydes, formaldehyde is used to a limited extent due to its higher toxicity. This work describes conditions for the simultaneous derivatization of formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde with 2,4-dinitrophenylhydrazine. The reaction is carried out in an acetonitrile–methanol mixture at 50°C in an ultrasonic bath using trifluoroacetic acid as a catalyst. The best separation of mixture components was achieved on a C18 column in gradient elution mode with acetonitrile and acetate buffer solution (pH 5.4) at a variable flow rate. The linearity range for formaldehyde was 2.51–20.0 mg/L, for glutaraldehyde 4.92–21.9 mg/L, for o-phthalaldehyde 1.98–6.94 mg/L, and for glyoxal 2.00–10.0 mg/L. The limits of detection for formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde were 0.453, 0.177, 0.967, and 0.760 mg/L, respectively. The developed method was successfully applied for the simultaneous determination of aldehydes in disinfectants.
Keywords
2,4-динитрофенилгидразин формальдегид глиоксаль глутаровый альдегид ортофталевый альдегид дезинфицирующие средства
Date of publication
06.02.2026
Year of publication
2026
Number of purchasers
0
Views
104

References

  1. 1. Jones S., Reagan K., Saunders N. Antiseptics, disinfectants, and sterilization / Advanced Monitoring and Procedures for Small Animal Emergency and Critical Care. Wiley, 2023. p. 837.
  2. 2. Al Shikh A., Milosevic A. Effectiveness of alcohol and aldehyde spray disinfectants on dental impressions // Clin. Cosmet. Investig. Dent. 2020. V. 12, P. 25. https://doi.org/10.2147/CCIDE.S233336
  3. 3. Frost L., Tully M., Dixon L., Hicks H.M., Bennett J., Stokes I., Marsella L., Gubbins S., Batten C. Evaluation of the efficacy of commercial disinfectants against African swine fever virus // Pathogens. 2023. V. 12. P. 855. https://doi.org/10.3390/pathogens12070855
  4. 4. David V., Moldoveanu S.C., Galoon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis // Biomed. Chromatogr. 2021. V. 35. Article e5008. https://doi.org/10.1002/bmc.5008
  5. 5. Donegatti T.A., Lobato A., Moreira Gonçalves L., Alves Pereira E. Cyclohexane-1,3-dione as a derivatizing agent for the analysis of aldehydes by micellar electrokinetic chromatography with diode array detection // Electrophoresis. 2019. V. 40. P. 2929. https://doi.org/10.1002/elps.201900171
  6. 6. Lu Y., Yao D., Chen C. 2-Hydrazinoquinoline as a Derivatization agent for LC-MS-based metabolomic investigation of diabetic ketoacidosis // Metabolites. 2013. V. 3. P. 993. https://doi.org/10.3390/metabo3040993
  7. 7. Elias R.J., Laurie V.F., Ebeler S.E., Wong J.W., Waterhouse A.L. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection // Anal. Chim. Acta. 2008. V. 626. P. 104. https://doi.org/10.1016/j.aca.2008.07.048
  8. 8. Douny C., Tihon A., Bayonnet P., Brose F., Degand G., Rozet E., Milet J., Ribonnet L., Lambin L., Larondelle Y., Scippo M.-L. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil // Food Anal. Methods. 2015. V. 8. P. 1425. https://doi.org/10.1007/s12161-014-0028-z
  9. 9. Basheer C., Pawagadhi S., Yu H., Balasubramanian R., Lee H.K. Determination of aldehydes in rainwater using micro-solid-phase extraction and high-performance liquid chromatography // J. Chromatogr. A. 2010. V. 1217. P. 6366. https://doi.org/10.1016/j.chroma.2010.08.012
  10. 10. Ma L., Liu G. Simultaneous analysis of malondialdehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in vegetable oil by reversed-phase high-performance liquid chromatography // J. Agric. Food Chem. 2017. V. 65. P. 11320. https://doi.org/10.1021/acs.jafc.7b04566
  11. 11. Kishikawa N., El-Maghrabey M.H., Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples // J. Pharm. Biomed. Anal. 2019. V. 175. Article 112782. https://doi.org/10.1016/j.jpba.2019.112782
  12. 12. Barnes A.R. Determination of glutaraldehyde in solution as its bis-2,4-dinitrophenylhydrazone derivative; determination of geometrical isomer ratios // Pharm. Acta Helv. 1993. V. 68. P. 113. https://doi.org/10.1016/0031-6865 (93)90013-V
  13. 13. Thanh N.H., Lan D.T.N., Ha P.T.T., An V.T.T., Khanh C.C. High performance liquid chromatography analytical method for glutaraldehyde determination in disinfectants // Vietnam J. Food Control. 2022. V. 5. P. 160.
  14. 14. El-Maghrabey M., Suzuki H., Kishikawa N., Kuroda N. A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation – luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples // Talanta. 2021. V. 233. Article 122522. https://doi.org/10.1016/j.talanta.2021.122522
  15. 15. Binding N. Simultaneous determination of airborne acetaldehyde, acetone, 2-butanone, and cyclohexanone using sampling tubes with 2,4-dinitrophenylhydrazine-coated solid sorbent // Toxicol. Lett. 1998. V. 96–97. P. 289. https://doi.org/10.1016/S0378-4274 (98)00085-X
  16. 16. Doronin S.Y., Chernova R.K., Burmistrova A.A. Effect of the micellar surfactant nanoreactors on the reactions of 2,4-dinitrophenylhydrazine with some aldehydes // Russ. J. Gen. Chem. 2008. V. 78. P. 903. https://doi.org/10.1134/S1070363208050113
  17. 17. ГОСТ Р 55227-2012 Вода. Методы определения содержания формальдегида. М.: Стандартинформ, 2019. 20 с.
  18. 18. Magnusson B., Örnemark U. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. 2nd ed. Eurachem, 2014. 70 p.
  19. 19. Borman P., Elder D. Q2 (R1) validation of analytical procedures: Text and methodology. ICH Quality Guidelines: an Implementation Guide. 2017. p. 127.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library