RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

DETERMINATION OF DOXORUBICIN BASED ON QUENCHING OF LUMINESCENCE OF ALLOYED QUANTUM DOTS

PII
S3034512X25120048-1
DOI
10.7868/S3034512X25120048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 12
Pages
1319-1330
Abstract
A sensitive, simple method for determining doxorubicin (Dox) in biological fluids, which does not require complex sample preparation, has been developed based on the quenching of luminescence of thioglycolic acid-stabilized CdZnSeS/ZnS quantum dots (QDs). Luminescence quenching was studied in model solutions and human blood plasma to establish optimal determination parameters. Optimal conditions for Dox detection were selected: QDs with optical density A = 0.05 and 25-fold plasma dilution. The developed method was applied to analyze a human blood sample. The limit of detection for Dox was 0.02 µg/mL, the limit of quantification 0.18 µg/mL, the linear range 0.27–4.07 µg/mL (R > 0.96); the method showed good reproducibility (s from 1.08 to 1.19%). The method's accuracy was confirmed by HPLC with UV detection.
Keywords
доксорубицин квантовые точки тушение люминесценции клинические анализы
Date of publication
06.02.2026
Year of publication
2026
Number of purchasers
0
Views
92

References

  1. 1. Sikora T., Szczepanek K., Korona-Głowniak I., Barbasz A., Czyżowska A., Kazik V., Barbasz J. Application of optical methods for determination of concentration of doxorubicin in blood and plasma // Pharmaceuticals. 2022. V. 15. № 2. P. 112. https://doi.org/10.3390/ph15020112
  2. 2. Tsyupka D.V., Yakovlev A.V., Goryacheva I. Yu., Drozd D.D., Ponomaryova T.S., Goryacheva O.A. Luminescence behavior of colloid quantum dots in the presence anthracycline antibiotic mitoxantrone: Surface interaction and luminescence quenching, size and composition dependence, potential for clinical study // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 671. Article 131648. https://doi.org/10.1016/j.colsurfa.2023.131648
  3. 3. Tasca E., Lynch A.M., O’Reilly E.J., Gunnlaugsson T. The self-association equilibria of doxorubicin at high concentration and ionic strength characterized by fluorescence spectroscopy and molecular dynamics simulations // Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 577. P. 517. https://doi.org/10.1016/j.colsurfa.2019.06.005
  4. 4. Skalová S., Navrátil T., Šestáková I., Jaklová Dytvová J. Doxorubicin determination using two novel voltammetric approaches: A comparative study // Electrochim. Acta. 2020. V. 330. Article 135180. https://doi.org/10.1016/j.electacta.2019.135180
  5. 5. Shinozawa S., Oda T. Determination of adriamycin (doxorubicin) and related fluorescent compounds in rat lymph and gall by high-performance liquid chromatography // J. Chromatogr. A. 1981. V. 212. № 3. P. 323. https://doi.org/10.1016/S0021-9673 (01)84045-0
  6. 6. Álvarez-Cedrón L., Sayalero M.L., Lanao J.M. High-performance liquid chromatographic validated assay of doxorubicin in rat plasma and tissues // J. Chromatogr. B: Biomed. Sci. Appl. 1999. V. 721. № 2. P. 271. https://doi.org/10.1016/S0378-4347 (98)00475-7
  7. 7. Порфирьев А.В., Хуснушинов З.Ф., Евтюшин Г.А. Электрохимический ДНК-сенсор для докосроубицина на основе оксида графена, электрополимеризованного азура А и композитов метилленового зеленого // Журн. аналит. химии. 2024. Т. 79. № 6. С. 760. @@ Рогfir’eva A. V., Khusnutdinova Z. F., Evtyugin G. A. An electrochemical DNA sensor for doxorubicin based on graphene oxide, electrophymetized Azure A, and methylene green composites // J. Anal. Chem. 2024. V. 79. № 6. P. 760.) https://doi.org/10.1134/S106193482470014X
  8. 8. Kappo D., Рогfir’eva A.V., Kiseleva N.S., Shakirova F.M., Evtyugin G.A. Voltammetric DNA sensor based on redox-active dyes for determining doxorubicin // J. Anal. Chem. 2022. V. 77. № 3. P. 388. https://doi.org/10.1134/S1061934822100075
  9. 9. Маланина А.Н., Кузин Ю.Н., Иванов А.Н., Заяпова Г.К., Шурин Д.Н., Стойков И.Н., Евтюшин Г.А. Полиэлектролитные комплексы полиэтиленомини—ДНК в составе волнаминерометрических сенсоров для определения повреждений ДНК // Журн. аналит. химии. 2022. Т. 77. № 2. С. 185. @@ Malanina A.N., Рогfir’eva A.V., Kiseleva N.S., Shakirova F.M., Evtyugin G.A. Polyelectrolyte polyethylenimine—DNA complexes in the composition of voltammetric sensors for detecting DNA damage // J. Anal. Chem. 2022. V. 77. № 2. P. 185.) https://doi.org/10.1134/S1061934822200095
  10. 10. Карпенко Е.Н., Глущенко Н.Н., Королева И.В., Шаповалова В.М. Сравнительная характеристика микробиологического и спектрофотометрического методов количественного определения докосроубицина в полимерных пленках и модельных смесях / Сб. 68-й итоговой науч. сессии КГМУ и отделения мас.-биол. наук Центр.-Чернозем. науч. центра РАМН: В 2-х ч. Ч. 2. Курск, 2002. С. 226.
  11. 11. Yang X., Zhang Y., Wang F., Wang Y., Liu Y., Yang P. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method // Mater. Res. Bull. 2015. V. 66. P. 169. https://doi.org/10.1016/j.materresbull.2015.02.050
  12. 12. Panikar S.S., Cialla-May D., De la Rosa E., Popp J., Campos A.M.B. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum // Talanta. 2020. V. 218. Article 121138. https://doi.org/10.1016/j.talanta.2020.121138
  13. 13. Yang M., Li H., Liu J., Cai Z., Huang J. Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect // Opt. Mater. 2021. V. 112. Article 110743. https://doi.org/10.1016/j.optmat.2020.110743
  14. 14. Huang K.Y., Jing Y., Lin H.C., Wu P.W., Huang Y.F. Gold nanocluster-based fluorescence turn-off probe for sensing of doxorubicin by photoinduced electron transfer // Sens. Actuators B: Chem. 2019. V. 296. Article 126656. https://doi.org/10.1016/j.snb.2019.126656
  15. 15. Castro R.C., Raposo M.M.M., Costa S.P.G. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels // Coord. Chem. Rev. 2021. V. 448. Article 214181. https://doi.org/10.1016/j.ccr.2021.214181
  16. 16. Абрамова А.М., Горячева О.А., Дрозд Д.Д., Новикова А.С., Пономарева Т.С., Строкин П.Д., Горячева И.Ю. Люминесценция полупроводниковых квантовых точек в химическом анализе // Журн. аналит. химии. 2021. T. 76. C. 273. @@ Abramova A.M., Goryacheva I.Yu., Sukhanov P.T., Ponomaryova T.S., Goryacheva O.A. Luminescence semiconductor quantum dots in chemical analysis // J. Anal. Chem. 2021. V. 76. P. 273.) https://doi.org/10.1134/S1061934821030023
  17. 17. Пономарева Т.С., Новикова А.С., Абрамова А.М., Горячева О.А., Дрозд Д.Д., Строкин П.Д., Горячева И.Ю. Малогоксичные квантовые точки I–III–VI нового поколения в химическом анализе // Журн. аналит. химии. 2022. T. 77. № 4. C. 402. @@ Ponomaryova T.S., Goryacheva I.Yu., Drozd D.D., Goryacheva O.A. New-generation low-toxic I–III–VI quantum dots in chemical analysis // J. Anal. Chem. 2022. V. 77. № 4. P. 402.) https://doi.org/10.1134/S1061934822040086
  18. 18. Bailey R.E., Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size // J. Am. Chem. Soc. 2003. V. 125. № 23. P. 7100. https://doi.org/10.1021/ja035000o
  19. 19. Susumu K., Oh E., Delehanty J.B., Medintz L.L. Purple-, blue-, and green-emitting multishell alloyed quantum dots: synthesis, characterization, and application for ratiometric extracellular pH sensing // Chem. Mater. 2017. V. 29. № 17. P. 7330. https://doi.org/10.1021/acs.chemmater.7b02174
  20. 20. Chen X., Zhang Y., Wang F., Wang Y., Liu Y. Highly efficient and stable CdZnSeS/ZnSeS quantum dots for application in white light-emitting diode // Front. Chem. 2022. V. 10. Article 845206. https://doi.org/10.3389/fchem.2022.845206
  21. 21. Sahu J., Sahoo H., Patra G.K., Mishra A.K. A review on alloyed quantum dots and their applications as photocatalysts // Int. J. Hydrogen Energy. 2023. V. 48. № 75. P. 29097. https://doi.org/10.1016/j.ijhydene.2023.04.109
  22. 22. Speranskaya E.S., Goryacheva I.Yu., Sukhanov P.T., Goryacheva O.A. Enzyme modulation of quantum dot luminescence: Application in bioanalysis // TrAC, Trends Anal. Chem. 2020. V. 127. Article 115897. https://doi.org/10.1016/j.trac.2020.115897
  23. 23. Raichlin S., Katz E., Willner I. Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: A versatile system for the optical detection of DNA, aptamer–substrate complexes and telomerase activity // Biosens. Bioelectron. 2011. V. 26. № 12. P. 4681. https://doi.org/10.1016/j.bios.2011.05.016
  24. 24. Drozd D.D., Goryacheva I.Yu., Ponomaryova T.S., Goryacheva O.A. Luminescent alloyed quantum dots for turn-off enzyme-based assay // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4471. https://doi.org/10.1007/s00216-022-04016-4
  25. 25. Goryacheva O.A., Ponomaryova T.S., Drozd D.D., Goryacheva I.Yu. Silanized luminescent quantum dots for the simultaneous multicolor lateral flow immunoassay of two mycotoxins // ACS Appl. Mater. Interfaces. 2020. V. 12. № 22. P. 24575. https://doi.org/10.1021/acsami.0c05099
  26. 26. Goryacheva O.A., Drozd D.D., Ponomaryova T.S., Goryacheva I.Yu. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots // Anal. Bioanal. Chem. 2022. V. 414. № 15. P. 4427. https://doi.org/10.1007/s00216-022-04005-7
  27. 27. Wei G., Ding P.T., Zheng J.M., Lu W.Y. Improved HPLC method for doxorubicin quantification in rat plasma to study the pharmacokinetics of micelle-encapsulated and liposome–encapsulated doxorubicin formulations // Biomed. Chromatogr. 2008. V. 22. № 11. P. 1252. https://doi.org/10.1002/bmc.1054
  28. 28. Mescheryakova S.A., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Doxorubicin detection in plasma and blood using a luminescence turn-off nanosensor based on alloyed CdZnSeS/ZnS quantum dots // Microchim. Acta. 2025. V. 192. P. 416. https://doi.org/10.1007/s00604-025-07283-x
  29. 29. Savla R., Taratula O., Garbuzenko O., Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer // J. Control. Release. 2011. V. 153. № 1. P. 16. https://doi.org/10.1016/j.jconrel.2011.02.015
  30. 30. Gao X., Li X., Li L., Zhou J., Ma H. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system // J. Fluoresc. 2012. V. 22. P. 103. https://doi.org/10.1007/s10895-011-0934-z
  31. 31. Mescheryakova S.A., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Fluorescent alloyed CdZnSeS/ZnS nanosensor for doxorubicin detection // Biosensors. 2023. V. 13. № 6. P. 596. https://doi.org/10.3390/bios13060596
  32. 32. Bagalkot V., Zhang L., Levy-Nissenbaum E., Jon S., Kantoff P.W., Langer R., Farokhzad O.C. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer // Nano Lett. 2007. V. 7. № 10. Р. 3065. https://doi.org/10.1021/nl071546n
  33. 33. Tsyupka D.V., Goryacheva I.Yu., Ponomaryova T.S., Drozd D.D., Goryacheva O.A. Anthracycline antibiotics detection using turn-off luminescent nanosensors // TrAC, Trends Anal. Chem. 2024. V. 177. Article 117774. https://doi.org/10.1016/j.trac.2024.117774
  34. 34. Shah S., Liu Y., Hu W., Gao J. Fluorescence properties of doxorubicin in PBS buffer and PVA films // J. Photochem. Photobiol. B: Biol. 2017. V. 170. Р. 65. https://doi.org/10.1016/j.jphotobiol.2017.03.024
  35. 35. Changenet-Barret P., Gustavsson T., Spiegelman A., Markovitsi D. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy // Phys. Chem. Chem. Phys. 2013. V. 15. № 8. Р. 2937. https://doi.org/10.1039/C2CP44056C
  36. 36. Porfireva A., Tikhonova S., Evuzyn G. Electrochemical sensor based on poly(Azure B)-DNA composite for doxorubicin determination // Sensors. 2019. V. 19. № 9. Р. 2085. https://doi.org/10.3390/s19092085
  37. 37. Hamada A., Kawaguchi T., Nakano M. Clinical pharmacokinetics of cytarabine formulations // Clin. Pharmacokinet. 2002. V. 41. Р. 705. https://doi.org/10.2165/00003088-200241100-00002
  38. 38. Афанасьев М.Е., Князева В.Б., Сотников А.Н. Токсирубицин: вклад в современную противоопухолевую терапию // Эффективная фармакотерапия. 2010. № 22. С. 46.
  39. 39. Liao Q., Li Y., Huang C. CdS quantum dots as fluorescence probes for detection of adriamycin hydrochloride // Chem. Res. Chin. Univ. 2007. V. 23. № 2. Р. 138. https://doi.org/10.1016/S1005-9040 (07)60029-4
  40. 40. Li P., Li S., Wang Y., Zhang Y., Han H. A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 392. № 1. Р. 7. https://doi.org/10.1016/j.colsurfa.2011.08.037
  41. 41. Li Z., Wang Y., Ni Y., Kokot S. Ratiometric fluorescence detection of doxorubicin by R-CQDs based on the inner filter effect and fluorescence resonance energy transfer // New J. Chem. 2023. V. 47. № 7. Р. 3541. https://doi.org/10.1039/D2NJ06172D
  42. 42. Zhang L., Wang Y., Li P., Huang C. 11-Mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection // ACS Appl. Nano Mater. 2021. V. 4. № 12. Р. 13734. https://doi.org/10.1021/acsanm.1c03141
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library