RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Determination of 6-Nitro-7-(4'-Nitrophenyl)-5-Ethyl-4,7-Dihydropyrazolo[1,5-a]Pyrimidine-3-Carboxylate as a Potential Antitumor Agent by Voltammetry

PII
10.31857/S0044450223020081-1
DOI
10.31857/S0044450223020081
Publication type
Status
Published
Authors
Volume/ Edition
Volume 78 / Issue number 3
Pages
260-267
Abstract
6-Nitro-7-(4'-nitrophenyl)-5-ethyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carboxylate (1) is one of promising antitumor compounds exhibiting biological activity against type 2 casein kinase, which is currently considered as a promising target in chemotherapy. Using the method of cyclic voltammetry, it was shown that the electrochemical activity of compound 1 in a mixed solution of Tris-HCl and ethanol (1 : 1) at pH 7.5 on a glassy-carbon electrode is due to the electrochemical reduction of the nitro group conjugated with the phenyl ring. A method was developed for the determination of compound 1 by direct cathodic square-wave voltammetry. The linearity region of the corresponding calibration curve obtained in a solution of a mixture of Tris-HCl and ethanol (1 : 1) at pH 7.5 is 5–500 mg/L (R2 = 0.988), the limit of detection is 0.8 mg/L, the limit of quantification is 2.4 mg/L. The accuracy of the developed procedure is close to 100%, the relative standard deviation is 1.4%.
Keywords
количественный анализ вещества квадратно-волновая вольтамерометрия пиразолопиримидины нитрогруппа стеклоуглеродный электрод противоопухолевое средство.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Pilleron S., Sarfati D., Janssen-Heijnen M., Vignat J., Ferlay J., Bray F., Soerjomataram I. Global cancer incidence in older adults, 2012 and 2035: A population-based study // Int. J. Cancer. 2019. V. 144. № 1. P. 49.
  2. 2. Davatgaran-Taghipour Y., Masoomzadeh S., Farzaei M.H., Bahramsoltani R., Karimi-Soureh Z., Rahimi R., Abdollahi M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective // Int. J. Nanomed. 2017. V. 12. P. 2689.
  3. 3. Abdelaziz H.M., Gaber M., Abd-Elwakil M.M., Mabrouk M.T., Elgohary M.M., Kamel N.M., Kabary D.M., Freag M.S., Samaha M.W., Mortada S.M. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates // J. Control. Release. 2018. V. 269. P. 374.
  4. 4. Madamsetty V.S., Mukherjee A., Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics // Front. Pharmacol. 2019. V. 10. P. 1264.
  5. 5. Fuchi Y. Murase H., Kai R., Kurata K., Karasawa S., Sasaki S. Artificial host molecules to covalently capture 8-Nitro-cGMP in neutral aqueous solutions and in cells // Bioconjug. Chem. 2021. V. 32. № 2. P. 385.
  6. 6. Denny W.A., Wilson W.R., Stevenson R.J., Tercel M., Atwell G.J., Yang S. Patterson V.A. Nitrobenzindoles and their use in cancer therapy. U.S. Patent No. 7718688. 18.05.2010.
  7. 7. Wardman P. Application of pulse radiolysis methods to study the reactions and structure of biomolecules // Rep. Prog. Phys. 1978. V. 21. № 2. P. 259.
  8. 8. Grunberg E., Titsworth E.H. Chemotherapeutic properties of heterocyclic compounds: monocyclic compounds with five-membered rings // Ann. Rev. Microbiol. 1973. V. 27. № 21. P. 317.
  9. 9. Alavi M., Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges // Drug Discov. Today. 2022. V. 27. № 2. P. 576.
  10. 10. Bhatnagar I., Kim S-K. Marine antitumor drugs: Status, shortfalls and strategies // Marine Drugs. 2010. V. 8. № 10. P. 2702.
  11. 11. Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy // Eur. J. Pharm. Biopharm. 2015. V. 93. P. 52.
  12. 12. Asati V., Anant A., Patel P., Kaur K., Gupta G.D. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches // Eur. J. Med. Chem. 2021. V. 225. Article 113781.
  13. 13. Pagano M.A., Cesaro L., Meggio F., Pinna L.A. Protein kinase CK2: A newcomer in the “druggable kinome” // Biochem. Soc. Trans. 2006. V. 34. № 6. P. 1303.
  14. 14. Squella J.A., Bollo S., Núñez-Vergara L.J. Recent developments in the electrochemistry of some nitro compounds of biological significance // Curr. Org. Chem. 2005. V. 9. № 6. P. 565
  15. 15. Малахова Н.А., Ивойлова А.В. Замана А.А., Русинов В.Л., Алямовская И.С., Иванова А.В., Козицина А.Н. Количественное определение основного вещества противовирусного препарата Триазид® с использованием метода вольтамперометрии // Журн. аналит. химии. 2020. Т. 75. № 3. С. 266.
  16. 16. Bonfilio R., De Araújo B.M., Salgado H.R.N. Recent applications of analytical techniques for quantitative pharmaceutical analysis: A review // WSEAS Trans. Biol. Biomed. 2010. T. 7. № 4. P. 316.
  17. 17. El-Shahawi M.S., Bahaffi S.O., El-Mogy T. Analysis of domperidone in pharmaceutical formulations and wastewater by differential pulse voltammetry at a glassy-carbon electrode // Anal. Bioanal. Chem. 2007. V. 387. № 2. P. 719.
  18. 18. Zittel H.E., Miller F.J. A glassy-carbon electrode for voltammetry // Anal. Chem. 1965. V. 37. № 2. P. 200.
  19. 19. Baizer M. M., Lund H. Organic Electrochemistry. New York, 1983. P. 1166.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library