ОХНМЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Калибратор мониторов как альтернатива спектрофлуориметру. Определение хинина в напитках и лекарственных препаратах

Код статьи
10.31857/S0044450223030052-1
DOI
10.31857/S0044450223030052
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 78 / Номер выпуска 3
Страницы
223-230
Аннотация
На примере хинина показана возможность использования калибратора мониторов для определения люминесцирующих соединений. Определение основано на облучении образца широкополосным излучением в видимом и ближнем УФ-диапазоне от встроенного источника, возбуждающим молекулы люминофора, и одновременной регистрации попадающего на детектор излучения. Выбраны условия измерений. Хинин можно определять в диапазоне 60–750 мкМ, предел обнаружения составляет 20 мкМ. Определению не мешают распространенные неорганические ионы, а также подсластители и регуляторы кислотности, присутствующие во многих напитках. Разработанный способ определения применим для анализа газированных напитков и лекарственных препаратов. По сравнению с традиционным спектрофлуориметром калибратор мониторов характеризуется компактностью, мобильностью, возможностью регистрации люминесценции в кюветах различных размера и формы и меньшей стоимостью.
Ключевые слова
калибратор мониторов люминесцентная спектроскопия хинин.
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
16

Библиография

  1. 1. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963. https://doi.org/10.7868/S0044450217110019
  2. 2. Моногарова О.В., Осколок К.В., Апяри В.В. Цветометрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857. https://doi.org/10.1134/S0044450218110063
  3. 3. Lau K.T., Edwards S., Diamond D. Solid-state ammonia sensor based on Berthelot’s reaction // Sens. Actuators B: Chem. 2004. V. 98. № 1. P. 12. https://doi.org/10.1016/j.snb.2003.08.004
  4. 4. Lapresta-Fernández A., Capitán-Vallvey L.F. Environmental monitoring using a conventional photographic digital camera for multianalyte disposable optical sensors // Anal. Chim. Acta. 2011. V. 706. № 2. P. 328. https://doi.org/10.1016/j.aca.2011.08.042
  5. 5. Doeven E.H., Barbante G.J., Kerr E., Hogan C.F., Endler J.A., Francis P.S. Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector // Anal. Chem. 2014. V. 86. № 5. P. 2727. https://doi.org/10.1021/ac404135f
  6. 6. Jayawardane B.M., McKelvie I.D., Kolev S.D. A paper-based device for measurement of reactive phosphate in water // Talanta. 2012. V. 100. P. 454. https://doi.org/10.1016/j.talanta.2012.08.021
  7. 7. Cantrell K., Erenas M.M., de Orbe-Payá I., Capitán-Vallvey L.F. Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors // Anal. Chem. 2010. V. 82. № 2. P. 531. https://doi.org/10.1021/ac901753c
  8. 8. Gárcia A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Payá I., Palma A.J., Capitán-Vallvey L.F. Mobile phone platform as portable chemical analyzer // Sens. Actuators B. 2011. V. 156. № 1. P. 350. https://doi.org/10.1016/j.snb.2011.04.045
  9. 9. Shahvar A., Saraji M., Shamsaei D. Smartphone-based chemiluminescence sensing for TLC imaging // Sens. Actuators B: Chem. 2018. V. 255. P. 891. https://doi.org/10.1016/j.snb.2017.08.144
  10. 10. Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer – A monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices // Sens. Actuators B: Chem. 2013. V. 188. P. 1109. https://doi.org/10.1016/j.snb.2013.07.097
  11. 11. Gorbunova M.V., Apyari V.V., Zolotov I.I., Dmitrienko S.G., Garshev A.V., Volkov P.A., Bochenkov V.E. A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines // Gold Bull. 2019. V. 52. P. 115. https://doi.org/10.1007/s13404-019-00267-9
  12. 12. Зрелова Л.В., Беляева Е.И., Марченко Д.Ю., Иванова Е.А., Санджиева Д.А., Дедов А.Г. Новый эк-спресс-метод определения гидразида изоникотиновой кислоты в водных растворах с применением отражательной спектрофотометрии и цветометрии // Журн. аналит. химии. 2018. Т. 73. № 3. С. 198. https://doi.org/10.7868/S0044450218030040
  13. 13. Marchenko D.Y., Petrov S.I., Sandzhieva D.A., Dedov A.G. Express method of the quantitative determination of nitrites by computer colorimetry using new reagent compositions // Theor. Found. Chem. Eng. 2016. V. 50. P. 648. https://doi.org/10.1134/S0040579516040187
  14. 14. Gorbunova M.V., Evstigneeva P.Yu., Apyari V.V., Dmitrienko S.G. A monitor calibrator as a portable tool for determination of luminescent compounds // IEEE Trans. Instrum. Meas. 2021. V. 70. Article 6002910. https://doi.org/10.1109/TIM.2020.3041390
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека