- PII
- 10.31857/S0044450224100032-1
- DOI
- 10.31857/S0044450224100032
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 79 / Issue number 10
- Pages
- 1089-1096
- Abstract
- A micellar microextraction technique has been developed for the preconcentration and spectrophotometric determination of phosphate ions in aqueous media based on the formation of a reduced formof molybdenum phosphoric heteropolyacid and its extraction from the aqueous phase into a supramolecularsolvent. In this case, in situ formation of the supramolecular solvent phase occurs when an amphiphile anda coacervation agent are introduced into the aqueous phase. The possibility of using biodegradable alkylpolyglycoside (C8-C10) as an amphiphile and carboxylic acids as coacervation agents has been studied. It isshown that in the acidic medium required for the formation of the reduced form of molybdenum phosphoric heteropolyacid, the phase of the supramolecular solvent is separated. The maximum absorbance of theextract is achieved using pivalic acid as a coacervation agent. The limit of detection (3σ) for phosphate ionsis 5 μg/L. The technique is environmentally friendly and does not require the use of expensive equipment.
- Keywords
- мицеллярная микроэкстракция супрамолекулярные растворители алкилполигликозиды спектрофотометрия фосфат-ионы водные среды
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Vakh C., Koronkiewicz S. Surfactants application in sample preparation techniques: Insights, trends, and perspectives // Trends Anal. Chem. 2023. V. 165. Article 117143.
- 2. Ballesteros-Gomez A., Rubio S., Perez-Bendito D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods // J. Chromatogr. A. 2009. V. 1216. P. 530.
- 3. Zhavoronok M.F., Vakh C., Bulatov A. Automated primary amine-based supramolecular solvent microextraction with monoterpenoid as coacervation agent before high-performance liquid chromatography // J. Food Compos. Anal. 2023. V. 116. Article 105085.
- 4. Timofeeva I., Stepanova K., Bulatov A. In-asyringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion // Talanta. 2021. V. 224. Article 121888.
- 5. Bogdanova P., Pochivalov A., Vakh C., Bulatov A. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides // Talanta. 2020. V. 216. Article 120992.
- 6. Pochivalov A., Fedorova A., Yakimova N., Safonova E., Bulatov A. Primary amine citrate-based supramolecular designer solvent: Preconcentration of ochratoxin A for determination in foods by liquid chromatography // Anal. Chim. Acta. 2024. V. 1285. Article 341991.
- 7. Zhavoronok M.F., Pochivalov A., Nugbienyo L., Bulatov A. Primary amine supramolecular solvent microextraction for smartphone-based determination of calcium in milk and infant formula // J. Food Compos. Anal. 2023. V. 124. Article 105700.
- 8. Bogdanova P., Vakh C., Bulatov A. A surfactantmediated microextraction of synthetic dyes from solid-phase food samples into the primary aminebased supramolecular solvent // Food Chem. 2022. V. 380. Article 131812.
- 9. Vakh C., Kasper S., Kovalchuk Y., Safonova E., Bulatov A. Alkyl polyglucoside-based supramolecular solvent formation in liquid-phase microextraction // Anal. Chim. Acta. 2022. V. 1228. Article 340304.
- 10. Ying G.G. Fate, behavior and effects of surfactants and their degradation products in the environment // Environ. Int. 2006. V. 32. P. 417.
- 11. Kovalchuk Y., Vakh C., Safonova E., Bulatov A. Primary amine-induced coacervation in alkyl polyglucoside micellar solution for supramolecular solventbased microextraction // ACS Sustain. Chem. Eng. 2023. V. 11. P. 6302.
- 12. Elser J., Bennett E. A broken biogeochemical cycle // Nature. 2011. V. 478. P. 29.
- 13. Mackay S.E., Malherbe F., Eldridge D.S. Quaternary amine functionalized chitosan for enhanced adsorption of low concentration phosphate to remediate environmental eutrophication // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 653. Article 129984.
- 14. ГОСТ 18309-2014 Вода. Методы определения фосфорсодержащих веществ. М.: Стандартинформ, 2019. 22 с.
- 15. ГОСТ 20851.2-75 Удобрения минеральные. Методы определения фосфатов. М.: ИПК Издательство стандартов, 1997. 37 с.
- 16. Balzer D. Cloud point phenomena in the phase behavior of alkyl polyglucosides in water // Langmuir. 1993. V. 9. P. 3375.
- 17. Никитина Е.А. Гетерополисоединения. М.: Государственное научно-техническое издательство химической литературы, 1962. 424 с.
- 18. Gimbert L.J., Haygarth P.M., Worsfold P.J. Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection // Talanta. 2007. V. 71. P. 1624–1628.
- 19. СанПиН 2.1.4.1074-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.
- 20. Badamasi H., Yaro M.N., Ibrahim A., Bashir I.A. Impacts of phosphates on water quality and aquatic life // Chem. Res. J. 2019. V. 4. P. 124.
- 21. Taverniers I., De Loose M., Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance // Trends Anal. Chem. 2004. V. 23. P. 535.