ОХНМЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СОСТАВА ОСНОВНЫХ ФОНОВЫХ ИОНОВ И ОПРЕДЕЛЕНИЕ ГАЗОКИНЕТИЧЕСКОЙ ТЕМПЕРАТУРЫ В НОРМАЛЬНОЙ (“ГОРЯЧЕЙ”) ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМЕ

Код статьи
10.31857/S0044450224100066-1
DOI
10.31857/S0044450224100066
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 79 / Номер выпуска 10
Страницы
1110-1121
Аннотация
Рассмотрена возможность изучения методом термодинамического моделирования проявления основных фоновых ионов, образованных главными элементами индуктивно связанной плазмы (H,N, O и Ar), при операционных параметрах режима нормальной (“горячей”) плазмы. Такие ионы,создающие самые сильные спектральные помехи в масс-спектрах, всегда наблюдаются при вводев масс-спектрометры с индуктивно связанной плазмой (МС-ИСП) водных (“влажных”) растворов проб. Методом термодинамического моделирования в диапазоне температур от 3000 до 8000 К рассчитан количественный состав основных фоновых ионов в МС-ИСП в зависимости от температуры плазмы. Проведено его сравнение с экспериментальными данными измерений масс-спектров основных фоновых ионов и показана высокая степень корреляции между теоретическими и экспериментальными результатами. Совпадение расчетов и экспериментов подтверждает правильность использованной термодинамической модели термохимических процессов в МС-ИСП и ее применимость для последующих расчетов при решении аналитических задач. Путем сравнения теоретических и экспериментальных масс-спектров основных фоновых ионов ИСП в нормальном режиме подтверждена возможность однозначной оценки газокинетической температуры плазмы.Установлено, что расчетные и экспериментальные данные по концентрациям только для ионов NO+ не совпадают с закономерностями, отмеченными для других фоновых ионов в режиме нормальной ИСП.
Ключевые слова
масс-спектрометрия с индуктивно связанной плазмой режим нормальной плазмы основные фоновые ионы операционные параметры прибора газокинетическая температура плазмы термодинамическое моделирование
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе массспектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.
  2. 2. May T.W., Wiedmeyer R.H. A table of polyatomic interferences in ICP-MS // At. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002
  3. 3. Taylor H.E. Inductively Coupled Plasma MassSpectrometry. Practices and Techniques. Academic Press, 2001. 291 p.
  4. 4. Пупышев А.А. Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой. Обзор // Журн. аналит. химии. 2023. Т. 78. № 9. С. 783. https://doi.org/10.31857/S0044450223090116
  5. 5. Pupyshev A.A. Singly charged argide ArM+ ions in inductively coupled plasma–mass spectrometry // J. Anal. Chem. 1998. V. 53. № 9. P. 783. https://doi.org/10.1134/S1061934823090113
  6. 6. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547 (01)00236-1
  7. 7. Houk R.S., Svec H.J., Fassel V.A. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma // Appl. Spectrosc. 1981. V. 35. № 6. Р. 380. https://doi.org/10.1366/000370281473
  8. 8. Wilson D.A., Vickers G.H., Hieftj G.M. Ionization temperatures in the inductively coupled plasma determined by mass spectrometry // Appl. Spectrosc. 1987. V. 41. № 5. Р. 875. https://doi.org/10.1366/0003702874448139
  9. 9. Houk R.S., Zhai Yan. Comparison of mass spectrometric and optical measurements of temperature and electron density in the inductively coupled plasma during mass spectrometric sampling // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1055. https://doi.org/10.1016/S0584-8547 (01)00202-6
  10. 10. Evans E.H, Ebdon L., Rowley L. Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2002. V. 57. P. 741. https://doi.org/10.1016/S0584-8547 (02)00003-4
  11. 11. Longerich H.P. Mass spectrometric determination of the temperature of an argon inductively coupled plasma from the formation of the singly charged monoxide rare earths and their rnown dissociation energies // J. Anal. At. Spectrom. 1989. V. 4. P. 491. https://doi.org/10.1039/JA9890400491
  12. 12. Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547 (94)80084-7
  13. 13. Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046
  14. 14. Tanner S.D. Characterization of ionization and matrix suppression in inductively coupled “cold” plasma mass spectrometry // J. Anal. At. Spectrom. 1995. V. 10. P. 905. https://doi.org/10.1039/JA9951000905
  15. 15. Пупышев А.А., Зайцева П.В., Бурылин М.Ю., Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамическое моделирование состава основных фоновых ионов в низкотемпературной (“холодной”) индуктивно связанной плазме // Журн. аналит. химии. 2024. Т. 79. № 8. С. 842
  16. 16. Huang Mao, Lehn S.A., Andrews E.J., Hieftje G.M. Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz // Spectrochim. Acta B: At. Spectrosc. 1997. V. 52. P. 1173. https://doi.org/10.1016/S0584-8547 (97)00007-4
  17. 17. Tanner S.D., Paul M., Beres S.A., Denoyer E.R. The application of cold conditions for the determination of trace levels of Fe, Ca, K, Na, and Li by ICPMS // At. Spectrosc. 1995. V. 16. № 1. P. 16.
  18. 18. Трусов Б.Г. TERRA. Программа термодинамического расчета состава фаз произвольных гетерогенных систем, а также их термодинамических и транспортных свойств. М.: МВТУ им. Н.Э. Баумана, 2005.
  19. 19. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
  20. 20. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows — Database on thermodynamic properties and related software // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916 (99)00023-1
  21. 21. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона Ar+2 и Ar2 // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S0040364419010174
  22. 22. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of Ar+2 and Ar2 argon dimers // High Temp. 2019. V. 57. № 1. P. 37. https://doi.org/10.1134/S0018151X19010176
  23. 23. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства ArH+ и ArH // Tеплофизика высоких температур. 2019. Т. 57. № 3. С. 367. https://doi.org/10.1134/S0040364419020121
  24. 24. Maltsev M.A, Morozov I.V., Osina E.L. Thermodynamic Properties of ArH+ and ArH // High Temp. 2019. V. 57. № 3. P. 335. https://doi.org/10.1134/S0018151X19020123
  25. 25. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131
  26. 26. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temp. 2020. V. 58. № 2. P. 184. https://doi.org/10.1134/S0018151X20020133
  27. 27. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // J. Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
  28. 28. Пупышев А.А., Суриков В.Т. Массспектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
  29. 29. HSC Chemistry® 6.0. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation. Outokumpy research, Finland. 2006.
  30. 30. HSC Chemistry 8.0. Outokumpy research. Finland, 2014.
  31. 31. NIST-JANAF Thermochemical Tables. 4th Ed. / J. Phys. Chem. Ref. Data. Monograph № 9 / Ed. Chase M.V. USA: American Chemical Society and the American Institute of Physics, 1998. 1961 p.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека