RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

THERMODYNAMIC MODELING OF THE COMPOSITION OF THE MAIN BACKGROUND IONS AND DETERMINATION OF THE GAS KINETIC TEMPERATURE IN A NORMAL (HOT) INDUCTIVELY COUPLED PLASMA

PII
10.31857/S0044450224100066-1
DOI
10.31857/S0044450224100066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 79 / Issue number 10
Pages
1110-1121
Abstract
The possibility of studying the manifestation of the main background ions formed by the main elements of inductively coupled plasma (H, N, O and Ar) by the method of thermodynamic modeling underthe operating parameters of the normal (“hot”) plasma regime is considered. Such ions, which create thestrongest spectral interference in the mass spectra, are always observed when introducing aqueous (“wet”)sample solutions into inductively coupled plasma (ICP-MS) mass spectrometers. The quantitative composition of the main background ions in ICP-MS, depending on the plasma temperature, was calculated using thermodynamic modeling in the temperature range from 3000 to 8000 K. It is compared with experimentaldata from measurements of the mass spectra of the main background ions and a high degree of correlation between theoretical and experimental results is shown. The coincidence of calculations and experiments confirms the correctness of the thermodynamic model of thermochemical processes used in ICP-MS andits applicability for subsequent calculations in solving analytical problems. By comparing the theoreticaland experimental mass spectra of the main background ions of the ICP in the normal mode, the possibilityof an unambiguous assessment of the gas kinetic temperature of the plasma was confirmed. It was foundthat the calculated and experimental data on concentrations only for NO+ ions do not coincide with thepatterns noted for other background ions in the normal ICP mode.
Keywords
масс-спектрометрия с индуктивно связанной плазмой режим нормальной плазмы основные фоновые ионы операционные параметры прибора газокинетическая температура плазмы термодинамическое моделирование
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе массспектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.
  2. 2. May T.W., Wiedmeyer R.H. A table of polyatomic interferences in ICP-MS // At. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002
  3. 3. Taylor H.E. Inductively Coupled Plasma MassSpectrometry. Practices and Techniques. Academic Press, 2001. 291 p.
  4. 4. Пупышев А.А. Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой. Обзор // Журн. аналит. химии. 2023. Т. 78. № 9. С. 783. https://doi.org/10.31857/S0044450223090116
  5. 5. Pupyshev A.A. Singly charged argide ArM+ ions in inductively coupled plasma–mass spectrometry // J. Anal. Chem. 1998. V. 53. № 9. P. 783. https://doi.org/10.1134/S1061934823090113
  6. 6. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547 (01)00236-1
  7. 7. Houk R.S., Svec H.J., Fassel V.A. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma // Appl. Spectrosc. 1981. V. 35. № 6. Р. 380. https://doi.org/10.1366/000370281473
  8. 8. Wilson D.A., Vickers G.H., Hieftj G.M. Ionization temperatures in the inductively coupled plasma determined by mass spectrometry // Appl. Spectrosc. 1987. V. 41. № 5. Р. 875. https://doi.org/10.1366/0003702874448139
  9. 9. Houk R.S., Zhai Yan. Comparison of mass spectrometric and optical measurements of temperature and electron density in the inductively coupled plasma during mass spectrometric sampling // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1055. https://doi.org/10.1016/S0584-8547 (01)00202-6
  10. 10. Evans E.H, Ebdon L., Rowley L. Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2002. V. 57. P. 741. https://doi.org/10.1016/S0584-8547 (02)00003-4
  11. 11. Longerich H.P. Mass spectrometric determination of the temperature of an argon inductively coupled plasma from the formation of the singly charged monoxide rare earths and their rnown dissociation energies // J. Anal. At. Spectrom. 1989. V. 4. P. 491. https://doi.org/10.1039/JA9890400491
  12. 12. Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547 (94)80084-7
  13. 13. Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046
  14. 14. Tanner S.D. Characterization of ionization and matrix suppression in inductively coupled “cold” plasma mass spectrometry // J. Anal. At. Spectrom. 1995. V. 10. P. 905. https://doi.org/10.1039/JA9951000905
  15. 15. Пупышев А.А., Зайцева П.В., Бурылин М.Ю., Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамическое моделирование состава основных фоновых ионов в низкотемпературной (“холодной”) индуктивно связанной плазме // Журн. аналит. химии. 2024. Т. 79. № 8. С. 842
  16. 16. Huang Mao, Lehn S.A., Andrews E.J., Hieftje G.M. Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz // Spectrochim. Acta B: At. Spectrosc. 1997. V. 52. P. 1173. https://doi.org/10.1016/S0584-8547 (97)00007-4
  17. 17. Tanner S.D., Paul M., Beres S.A., Denoyer E.R. The application of cold conditions for the determination of trace levels of Fe, Ca, K, Na, and Li by ICPMS // At. Spectrosc. 1995. V. 16. № 1. P. 16.
  18. 18. Трусов Б.Г. TERRA. Программа термодинамического расчета состава фаз произвольных гетерогенных систем, а также их термодинамических и транспортных свойств. М.: МВТУ им. Н.Э. Баумана, 2005.
  19. 19. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
  20. 20. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows — Database on thermodynamic properties and related software // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916 (99)00023-1
  21. 21. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона Ar+2 и Ar2 // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S0040364419010174
  22. 22. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of Ar+2 and Ar2 argon dimers // High Temp. 2019. V. 57. № 1. P. 37. https://doi.org/10.1134/S0018151X19010176
  23. 23. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства ArH+ и ArH // Tеплофизика высоких температур. 2019. Т. 57. № 3. С. 367. https://doi.org/10.1134/S0040364419020121
  24. 24. Maltsev M.A, Morozov I.V., Osina E.L. Thermodynamic Properties of ArH+ and ArH // High Temp. 2019. V. 57. № 3. P. 335. https://doi.org/10.1134/S0018151X19020123
  25. 25. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131
  26. 26. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temp. 2020. V. 58. № 2. P. 184. https://doi.org/10.1134/S0018151X20020133
  27. 27. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // J. Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
  28. 28. Пупышев А.А., Суриков В.Т. Массспектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
  29. 29. HSC Chemistry® 6.0. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation. Outokumpy research, Finland. 2006.
  30. 30. HSC Chemistry 8.0. Outokumpy research. Finland, 2014.
  31. 31. NIST-JANAF Thermochemical Tables. 4th Ed. / J. Phys. Chem. Ref. Data. Monograph № 9 / Ed. Chase M.V. USA: American Chemical Society and the American Institute of Physics, 1998. 1961 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library