ОХНМЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

ИДЕНТИФИКАЦИЯ КУРКУМЫ И УСТАНОВЛЕНИЕ ФАЛЬСИФИКАЦИИ МЕТОДАМИ ЦИФРОВОЙ ЦВЕТОМЕТРИИ И БЛИЖНЕЙ ИК-СПЕКТРОСКОПИИ

Код статьи
S0044450225060017-1
DOI
10.31857/S0044450225060017
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 80 / Номер выпуска 6
Страницы
533-544
Аннотация
Показана возможность идентификации и установления факта фальсификации куркумы простыми и доступными способами с использованием методов ИК-спектроскопии, цифровой цветометрии и хемометрической обработки спектральных данных. Ближняя ИК-спектроскопия позволила дифференцировать пробы порошка куркумы, приобретенной в Индии, изготовленной измельчением корней, и коммерческих образцов, а также отделить их от образцов с примесями муки, крахмала, хлебной крошки и мела путем анализа спектров диффузного отражения методами главных компонент, иерархического кластерного анализа и формального независимого моделирования аналогий классов. Эти же подходы применили к более простому и менее затратному цветометрическому методу. Хемометрическая обработка полученных данных подтвердила отсутствие сходства анализируемых проб куркумы с образцами, содержащими добавки, и позволила определить примеси с использованием алгоритмов многомерного регрессионного анализа. Сопоставление результатов, полученных методами ИК-спектроскопии и цифровой цветометрии, показало их эквивалентную эффективность, что позволило рекомендовать более доступный цветометрический метод для рутинного контроля качества и выявления фальсификации куркумы.
Ключевые слова
куркума идентификация фальсификация цветометрия смартфон ближняя ИК-спектроскопия хемометрика
Дата публикации
03.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Запорожченко А.А., Суботялов М.А. Биологическая активность и терапевтический потенциал Curcuma longa (обзор литературы) // Сибирский научный медицинский журнал. 2023. Т. 43. № 3. С. 15. https://doi.org/10.18699/SSMJ20230302
  2. 2. Wojcik M., Krawczyk М., Wojcik Р., Cypryk К., Wozniak L.A. Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer // Oxid. Med. Cell. Longevity. 2018. Article ID 9698258. https://doi.org/10.1155/2018/9698258
  3. 3. Venigalla M., Gyengesi E., Munch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease // Neural Regen Res. 2015. V. 10. № 8. Р. 1182. https://doi.org/0.4103/1673-5374.162686
  4. 4. Sasikumar B. Turmeric / Handbook of Herbs and Spices (Second edition). 2012. V. 1. Р. 526. https://doi.org/10.1533/9780857095671.526
  5. 5. ГОСТ ISO 5562-2017. Пряности. Куркума целая и молотая (порошкообразная). Технические условия. М.: Стандартинформ, 2017. 7 с.
  6. 6. Абдуллаева Л.С., Лучкин М.А., Лунева Т.А., Слащинин Д.Г. Оценка качества пряностей / Молодые ученые в решении актуальных проблем науки: Сборник материалов Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых. 2023. С. 461.
  7. 7. Sahu P.K., Panda J., Jogendra Kumar Y.V. V., Ranjitha S.K. A robust RP-HPLC method for determination of turmeric adulteration // J. Liq. Chromatogr. Relat. Technol. 2020. V. 43. № 7-8. P. 247. https://doi.org/10.1080/10826076.2020.1722162
  8. 8. Вострикова Н.Л., Минаев М.Ю., Чиковани К.Г. Определение подлинности куркумы // Пищевые системы. 2021. Т. 4. № 1. С. 62. https://doi.org/10.21323/2618-9771-2021-4-1-62-70
  9. 9. Nallappan K., Dash J., Ray S., Pesala B. Identification of adulterants in turmeric powder using terahertz spectroscopy / 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2013. P. 1. https://doi.org/10.1109/IRMMW-THz.2013.6665688
  10. 10. Tamiji Z., Habibi Z., Pourjabbar Z., Khoshayand M.R., Sadeghi N., Hajimahmoodi M. Detection and quantification of adulteration in turmeric by spectroscopy coupled with chemometrics // J. Consum. Prot. Food Saf. 2022. V. 17. P. 221. https://doi.org/10.1007/s00003-022-01380-2
  11. 11. Kar S., Tudu B., Jana A., Bandyopadhyay R. FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder // Food Addit. Contam. Part A. 2019. V. 36. № 6. P. 863. https://doi.org/10.1080/19440049.2019.1600746
  12. 12. Chaminda Bandara W.G., Kasun Prabhath G.W., Sahan Chinthana Bandara Dissanayake D.W., Herath V.R., Roshan Indika Godaliyadda G.M., Bandara Ekanayake M.P., Demini D., Madhujith T. Validation of multispectral imaging for the detection of selected adulterants in turmeric samples // J. Food Eng. 2020. V. 266. Article 109700. https://doi.org/10.1016/j.jfoodeng.2019.109700
  13. 13. Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317.
  14. 14. Shogah Z.A.Ch., Bolshakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. № 4. P. 317. https://doi.org/10.31857/S0044450223030131
  15. 15. Amelin V.G., Emel’yanov O.E., Shogaha Z.A. Ch., Tret’yakov A.V. Determination of the mass fraction of milk fat in bottled milk using a contactless colorimetric method // J. Anal. Chem. 2024. V. 79. № 11. P. 1509. https://doi.org/10.1134/S1061934824700904
  16. 16. Amelin V.G., Emel’yanov O.E., Shogaha Z.A. Ch., Tret’yakov A.V. Detection and identification of starch and flour adulteration by digital colorimetry and Fourier-tansform near-IR spectroscopy // J. Anal. Chem. 2024. V. 79. № 11. P. 1515. https://doi.org/10.1134/S1061934824700916
  17. 17. Johnson J.B., Walsh K.B., Naiker M., Ameer K. The use of infrared spectroscopy for the quantification of bioactive compounds in food: A Review // Molecules. 2023. V. 28. № 7. Article 3215. https://doi.org/10.3390/molecules28073215
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека