RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

DIRECT ANALYSIS OF VEGETABLE OILS BY ATMOSPHERIC PRESSURE LASER PLASMA IONIZATION COMBINED WITH MACHINE LEARNING METHODS

PII
S0044450225060057-1
DOI
10.31857/S0044450225060057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 80 / Issue number 6
Pages
582-591
Abstract
The atmospteric pressure laser plasma ionization (APLPI) method in combination with machine learning methods is investigated to solve the problem of classification of vegetable oils. Samples of olive oil, rapeseed oil, sunflower oil and linseed oil were studied. The samples were classified on the basis of mass spectrometric profiles of volatile organic compounds emitted by the oils. It was shown that when hierarchical cluster analysis (HCA) with pre-selection of features by analysis of variance (ANOVA) and reduction of the dimensionality of the response matrix by t-distributed stochastic neighbor embedding (t-SNE), each type of oil forms a distinct cluster. Using the example of olive and rapeseed oil blends analysis, it was demonstrated that the combination of the APLPI method with the multiple linear regression (MLR) method allows to quantify the share of oils in the studied blends. The developed approach allows for rapid, direct nondestructive analysis of vegetable oils without sample preparation and can be used for detection of adulterated products.
Keywords
масс-спектрометрия лазерно-индуцированная плазма машинное обучение летучие органические соединения растительные масла фальсификация
Date of publication
26.02.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Medina S., Perestrelo R., Silva P., Pereira J.A., Câmara J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches // Trends Food Sci. Technol. 2019. V. 85. P. 163. https://doi.org/10.1016/j.tifs.2019.01.017
  2. 2. Dettmer K., Aronov P.A., Hammock B.D. Mass spectrometry-based metabolomics // Mass Spectrum. Rev. 2007. V. 26. № 1. P. 51. https://doi.org/10.1002/mas.20108
  3. 3. Kuo T.H., Dutkiewicz E.P., Pei J., Hsu C.C. Ambient ionization mass spectrometry today and tomorrow: Embracing challenges and opportunities // Anal. Chem. 2019. V. 92. № 3. P. 2353. https://dx.doi.org/10.1021/acs.analchem.9b05454
  4. 4. Shi L., Habib A., Bi L., Hong H., Begum R., Wen, L. Ambient ionization mass spectrometry: Application and prospective // Crit. Rev. Anal. Chem. 2022. V. 54. № 6. P. 1584. https://doi.org/10.1080/10408347.2022.2124840
  5. 5. Beck A.G., Muhoberac M., Randolph C.E., Beveridge C.H., Wijewardhane P.R., Kenttamaa H.I., Chopra G. Recent developments in machine learning for mass spectrometry // ACS Meas. Sci. Au. 2024. V. 4. № 3. P. 233. https://doi.org/10.1021/acsmeasuresciau.3c00060
  6. 6. Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006. 778 p.
  7. 7. Пенто А.В., Никифоров С.М., Симановский Я.О., Гречников А.А., Алимпиев С.С. Лазерная абляция и ионизация излучением лазерной плазмы при атмосферном давлении в масс-спектрометрии органических соединений // Квантовая электроника. 2013. Т. 43. № 1. С. 55.
  8. 8. Алимпиев С.С., Гречников А.А., Никифоров С.М. Новые подходы в лазерной масс-спектрометрии органических объектов // УФН. 2015. Т. 185. № 2. С. 207.
  9. 9. Кравец К.Ю., Тимакова С.И., Гречников А.А., Бородков А.С., Лаптинская П.К., Кузьмин В.С., Симановский Я.О. Скрининг лекарственных соединений в крови методом масс-спектрометрии с ионизацией, индуцированной лазерной плазмой при атмосферном давлении // Журн. аналит. химии. 2022. Т. 77. № 10. С. 947. https://doi.org/10.31857/S0044450222100085.
  10. 10. Тимакова С.И., Кравец К.Ю., Бородков А.С., Симановский Я.О., Гречников А.А. Масс-спектрометрия нитроароматических соединений с ионизацией, индуцированной лазерной плазмой при атмосферном давлении // Масс-спектрометрия. 2022. Т. 19. № 4. С. 226. https://doi.org/10.25703/MS.2022.19.21.
  11. 11. Milanez K.D.T., Pontes M.J.C. Classification of extra virgin olive oil and verification of adulteration using digital image and discriminant analysis // Anal. Methods. 2015. V. 7. P. 8839.
  12. 12. Sun X., Lin W., Li X., Shen Q., Luo H. Detection and quantification of extra virgin olive oil adulteration with edible oils by FT-IR spectroscopy and chemometrics // Anal. Methods. 2015. V. 7. № 9. P. 3939.
  13. 13. Vasconcelos M., Coelho L., Barros A., de Almeida J.M.M.M. Study of adulteration of extra virgin olive oil with peanut oil using FTIR spectroscopy and chemometrics // Cogent Food. Agric. 2015. V. 1. № 1. Article 1018695. https://doi.org/10.1080/23311932.2015.1018695
  14. 14. Ali H., Saleem M., Anser M.R., Khan S., Ullah R., Bilal, M. Validation of fluorescence spectroscopy to detect adulteration of edible oil in extra virgin olive oil (EVOO) by applying chemometrics // Appl. Spectrosc. 2018. V. 72. № 9. P. 1371. https://doi.org/10.1177/0003702818768485
  15. 15. Kim M., Lee S., Chang K., Chung H., Jung Y.M. Use of temperature dependent Raman spectra to improve accuracy for analysis of complex oil-based samples: Lube base oils and adulterated olive oils // Anal. Chim. Acta. 2012. V. 748. P. 58. https://doi.org/10.1016/j.aca.2012.08.028
  16. 16. Yang Y., Ferro M.D., Cavaco I., Liang Y. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics // J. Agric. Food. Chem. 2013. V. 61. № 15. P. 3693. https://doi.org/10.1021/jf4000538
  17. 17. Shi T., Wu G., Jin Q., Wang X. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints // Food Сhem. 2021. V. 352. Article 129422. https://doi.org/10.1016/j.foodchem.2021.129422
  18. 18. Capote F.P., Jiménez J.R., De Castro M.L. Sequential (step-by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles // Anal. Bioanal. Chem. 2007. V. 388. P. 1859. https://doi.org/10.1007/s00216-007-1422-9
  19. 19. Criado-Navarro I., Mena-Bravo A., Calderón-Santiago M., Priego-Capote F. Determination of glycerophospholipids in vegetable edible oils: Proof of concept to discriminate olive oil categories // Food Сhem. 2019. V. 299. Article 125136. https://doi.org/10.1016/j.foodchem.2019.125136
  20. 20. Peng L., Yuan J., Yao D., Chen C. Fingerprinting triacylglycerols and aldehydes as identity and thermal stability indicators of camellia oil through chemometric comparison with olive oil // Food Sci. Nutr. 2021. V. 9. № 5. P. 2561. https://doi.org/10.1002/fsn3.2209
  21. 21. Pento A.V., Bukharina A.B., Nikiforov S.M., Simanovsky Y.O., Sartakov B.G., Ablizen R.S., Fabelinsky V.I., Smirnov V.V., Grechnikov A.A. Laser-induced plasma on a metal surface for ionization of organic compounds at atmospheric pressure // Int. J. Mass Spectrom. 2021. V. 461. Article 116498. https://doi.org/10.1016/j.ijms.2020.116498
  22. 22. Plasquy E., García Martos J.M., Florido M.C., Sola-Guirado R.R., García Martín J.F. Cold storage and temperature management of olive fruit: The impact on fruit physiology and olive oil quality-A review // Processes. 2021. V. 9. № 9. P. 1543. https://doi.org/10.3390/pr9091543
  23. 23. Миркин Б.Г. Базовые методы анализа данных: учебник и практикум для вузов. 3-е изд., перераб. и доп. М.: Юрайт, 2024. 297 с.
  24. 24. Van der Maaten L., Hinton G. Visualizing data using t-SNE // J. Mach. Learn. Res. 2008. V. 9. № 11. P. 2579.
  25. 25. Abdelmoula W.M., Balluff B., Englert S., Dijkstra J., Reinders M.J., Walch A., McDonnell L.A., Lelieveldt B.P. Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data // Proc. Natl. Acad. Sci. 2016. V. 113. № 43. P. 12244. https://doi.org/10.1073/pnas.1510227113
  26. 26. Hebra T., Elie N., Poyer S., Van Elslande E., Touboul D., Eparvier V. Dereplication, annotation, and characterization of 74 potential antimicrobial metabolites from Penicillium Sclerotiorum using t-SNE molecular networks // Metabolites. 2021. V. 11. № 7. P. 444. https://doi.org/10.3390/metabo11070444
  27. 27. Azadmard-Damirchi S., Torbati M. Adulterations in some edible oils and fats and their detection methods // J. Food Qual. Hazards Control. 2015. V. 2. № 2. P. 38.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library