- PII
- S3034512X25120032-1
- DOI
- 10.7868/S3034512X25120032
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 80 / Issue number 12
- Pages
- 1311-1318
- Abstract
- Dialdehydes are predominantly used as disinfectants because these compounds exhibit a broad spectrum of antimicrobial activity. Among monoaldehydes, formaldehyde is used to a limited extent due to its higher toxicity. This work describes conditions for the simultaneous derivatization of formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde with 2,4-dinitrophenylhydrazine. The reaction is carried out in an acetonitrile–methanol mixture at 50°C in an ultrasonic bath using trifluoroacetic acid as a catalyst. The best separation of mixture components was achieved on a C18 column in gradient elution mode with acetonitrile and acetate buffer solution (pH 5.4) at a variable flow rate. The linearity range for formaldehyde was 2.51–20.0 mg/L, for glutaraldehyde 4.92–21.9 mg/L, for o-phthalaldehyde 1.98–6.94 mg/L, and for glyoxal 2.00–10.0 mg/L. The limits of detection for formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde were 0.453, 0.177, 0.967, and 0.760 mg/L, respectively. The developed method was successfully applied for the simultaneous determination of aldehydes in disinfectants.
- Keywords
- 2,4-динитрофенилгидразин формальдегид глиоксаль глутаровый альдегид ортофталевый альдегид дезинфицирующие средства
- Date of publication
- 06.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 99
References
- 1. Jones S., Reagan K., Saunders N. Antiseptics, disinfectants, and sterilization / Advanced Monitoring and Procedures for Small Animal Emergency and Critical Care. Wiley, 2023. p. 837.
- 2. Al Shikh A., Milosevic A. Effectiveness of alcohol and aldehyde spray disinfectants on dental impressions // Clin. Cosmet. Investig. Dent. 2020. V. 12, P. 25. https://doi.org/10.2147/CCIDE.S233336
- 3. Frost L., Tully M., Dixon L., Hicks H.M., Bennett J., Stokes I., Marsella L., Gubbins S., Batten C. Evaluation of the efficacy of commercial disinfectants against African swine fever virus // Pathogens. 2023. V. 12. P. 855. https://doi.org/10.3390/pathogens12070855
- 4. David V., Moldoveanu S.C., Galoon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis // Biomed. Chromatogr. 2021. V. 35. Article e5008. https://doi.org/10.1002/bmc.5008
- 5. Donegatti T.A., Lobato A., Moreira Gonçalves L., Alves Pereira E. Cyclohexane-1,3-dione as a derivatizing agent for the analysis of aldehydes by micellar electrokinetic chromatography with diode array detection // Electrophoresis. 2019. V. 40. P. 2929. https://doi.org/10.1002/elps.201900171
- 6. Lu Y., Yao D., Chen C. 2-Hydrazinoquinoline as a Derivatization agent for LC-MS-based metabolomic investigation of diabetic ketoacidosis // Metabolites. 2013. V. 3. P. 993. https://doi.org/10.3390/metabo3040993
- 7. Elias R.J., Laurie V.F., Ebeler S.E., Wong J.W., Waterhouse A.L. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection // Anal. Chim. Acta. 2008. V. 626. P. 104. https://doi.org/10.1016/j.aca.2008.07.048
- 8. Douny C., Tihon A., Bayonnet P., Brose F., Degand G., Rozet E., Milet J., Ribonnet L., Lambin L., Larondelle Y., Scippo M.-L. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil // Food Anal. Methods. 2015. V. 8. P. 1425. https://doi.org/10.1007/s12161-014-0028-z
- 9. Basheer C., Pawagadhi S., Yu H., Balasubramanian R., Lee H.K. Determination of aldehydes in rainwater using micro-solid-phase extraction and high-performance liquid chromatography // J. Chromatogr. A. 2010. V. 1217. P. 6366. https://doi.org/10.1016/j.chroma.2010.08.012
- 10. Ma L., Liu G. Simultaneous analysis of malondialdehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in vegetable oil by reversed-phase high-performance liquid chromatography // J. Agric. Food Chem. 2017. V. 65. P. 11320. https://doi.org/10.1021/acs.jafc.7b04566
- 11. Kishikawa N., El-Maghrabey M.H., Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples // J. Pharm. Biomed. Anal. 2019. V. 175. Article 112782. https://doi.org/10.1016/j.jpba.2019.112782
- 12. Barnes A.R. Determination of glutaraldehyde in solution as its bis-2,4-dinitrophenylhydrazone derivative; determination of geometrical isomer ratios // Pharm. Acta Helv. 1993. V. 68. P. 113. https://doi.org/10.1016/0031-6865 (93)90013-V
- 13. Thanh N.H., Lan D.T.N., Ha P.T.T., An V.T.T., Khanh C.C. High performance liquid chromatography analytical method for glutaraldehyde determination in disinfectants // Vietnam J. Food Control. 2022. V. 5. P. 160.
- 14. El-Maghrabey M., Suzuki H., Kishikawa N., Kuroda N. A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation – luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples // Talanta. 2021. V. 233. Article 122522. https://doi.org/10.1016/j.talanta.2021.122522
- 15. Binding N. Simultaneous determination of airborne acetaldehyde, acetone, 2-butanone, and cyclohexanone using sampling tubes with 2,4-dinitrophenylhydrazine-coated solid sorbent // Toxicol. Lett. 1998. V. 96–97. P. 289. https://doi.org/10.1016/S0378-4274 (98)00085-X
- 16. Doronin S.Y., Chernova R.K., Burmistrova A.A. Effect of the micellar surfactant nanoreactors on the reactions of 2,4-dinitrophenylhydrazine with some aldehydes // Russ. J. Gen. Chem. 2008. V. 78. P. 903. https://doi.org/10.1134/S1070363208050113
- 17. ГОСТ Р 55227-2012 Вода. Методы определения содержания формальдегида. М.: Стандартинформ, 2019. 20 с.
- 18. Magnusson B., Örnemark U. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. 2nd ed. Eurachem, 2014. 70 p.
- 19. Borman P., Elder D. Q2 (R1) validation of analytical procedures: Text and methodology. ICH Quality Guidelines: an Implementation Guide. 2017. p. 127.