RAS Chemistry & Material ScienceЖурнал аналитической химии Journal of Analytical Chemistry

  • ISSN (Print) 0044-4502
  • ISSN (Online) 3034-512X

Electrochemical immunosensors based on gold nanoparticles for the determination of ovalbumin in immunobiological preparations

PII
10.31857/S0044450224070032-1
DOI
10.31857/S0044450224070032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 79 / Issue number 7
Pages
716-725
Abstract
A sandwich-type voltammetric immunosensor based on conjugates of gold nanoparticles (AuNP) with specific immunoglobulins (IgG) against ovalbumin (IgG@AuNP) is developed for the determination of ovalbumin in some immunobiological preparations. The IgG@AuNP conjugate is synthesized by passive adsorption. A carbon-containing planar printed electrode modified by laser reduced graphene oxide is used as a substrate electrode for immobilizing the receptor layer of specific immunoglobulins. A possibility of the catalytic reduction of silver nitrate with a mixture of reducing agents, citric acid and metol, is considered in order to enhance the signal of AuNP. Conditions for the voltammetric recording of the electrochemical signal of silver on an immunosensor, which has been successfully tested in determining ovalbumin residues in some immunobiological drugs, are selected. Enzyme-linked immunosorbent assay is used as a reference method.
Keywords
наночастицы золота конъюгаты на основе иммуноглобулинов и наночастиц золота электрохимический иммуносенсор овальбумин вакцины
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Yamamoto T., Juneja L. R., Hatta H., Kim M. Hen Eggs: Basic and Applied Science. CRC Press, 1996. 216 p.
  2. 2. Edevag G., Eriksson M., Granström M. The development and standardization of an ELISA for ovalbumin determination in influenza 101 vaccines // J. Biol. Stand. 1986. V. 14. № 3. P. 223. https://doi.org/10.1016/0092-1157 (86)90007-7
  3. 3. Давлетбаева Л.Р. Валидация количественных иммуноферментных тест-систем для контроля качества медицинских иммунобиологических препаратов. Дис. ... канд. биол. наук. Уфа: Министерство здравоохранения и социального развития Российской федерации, 2007. 111 с.
  4. 4. Полтавченко А.Г., Полтавченко Д.А., Загоскина Т.Ю. Перспективы использования коллоидного серебра как маркера иммуноанализа // Сибирь-Восток. 2002. Т. 3. № 51. С. 10.
  5. 5. Iglesias-Mayor A., Amor-Gutiérrez O., Costa-García A., de la Escosura-Muñiz A. Nanoparticles as emerging labels in electrochemical immunosensors // Sensors. 2019. V. 19. № 23. Article 5137. https://doi.org/10.3390/s19235137
  6. 6. Beck F., Horn C., Baeumner A. J. Ag nanoparticles outperform Au nanoparticles for the use as label in electrochemical point-of-care sensors // Anal. Bioanal. Chem. 2022. V. 414. P. 475. https://doi.org/10.1007/s00216-021-03288-6
  7. 7. Frens G. Controlled nucleation for the regulation of particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. № 105. P. 20. https://doi.org/10.1038/physci241020a0
  8. 8. Schwartzbach S. D., Osafune T. Immunoelectron Microscopy: Methods and Protocols. Totowa, NJ: Humana Press, 2010. 351 p.
  9. 9. Rodriguez R.D., Khalelov A., Postnikov P.S., Lipovka A., Dorozhko Е., Amin I., Murastov G.V., Chen J.-J., Sheng W., Trusova M.E., Chehimi M.M., Sheremet E. Beyond graphene oxide: Laser engineering functionalized graphene for flexible electronics // Materials Horizons. 2020. V. 7. № 4. P. 1030. https://doi.org/10.1039/C9MH01950B
  10. 10. Saqib M., Dorozhko E.V., Barek J., Vyskocil V., Korotkova E.I., Shabalina A.V. A laser reduced graphene oxide grid electrode for the voltammetric determination of carbaryl // Molecules. 2021. V. 26. № 16. Atricle 5050. https://doi.org/10.3390/molecules26165050
  11. 11. Rusling J. F. Nanomaterials-based electrochemical immunosensors for proteins // Chemical Record. 2012. V. 12. № 1. P. 164. https://doi.org/10.1002/tcr.201100034
  12. 12. Qin X., Dong Y., Wang M., Zhu Z., Li M., Chen X. et al. C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins // Sci. China Chem. 2018. V. 61. P. 476. https://doi.org/10.1007/s11426-017-9204-8
  13. 13. Chen Z.-P., Peng Z.-F., Luo Y., Qu B., Jiang J.-H., Zhang X.-B. et al. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement // Biosens. Bioelectron. 2007. V. 23. № 4. P. 485. https://doi.org/10.1016/j.bios.2007.06.005
  14. 14. Zhao C., Wu J., Ju H., Yan F. Multiplexed electrochemical immunoassay using streptavidin/nanogold/carbon nanohorn as a signal tag to induce silver deposition // Anal. Chim. Acta. 2014. V. 847. P. 37. https://doi.org/10.1016/j.aca.2014.07.035
  15. 15. Полтавченко А.Г., Ерш А.В., Крупницкая Ю.А. Выбор системы детекции для мультиплексного дот-иммуноанализа антител // Клиническая лабораторная диагностика. 2016. Т. 61. № 4. С. 229.
  16. 16. ICH Q. R. The international council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). Text and methodology Q. 2022. V. 2.
  17. 17. Экспериандова Л.П., Беликов К.Н., Химченко С.В., Бланк Т.А. Еще раз о пределах обнаружения и определения // Журн. аналит. химии. 2010. Т. 65. №. 3. С. 229. (Eksperiandova L.P., Belikov K.N., Khimchenko S.V., Blank T.A. Once again about determination and detection limits // J. Anal. Chem. 2010. V. 65. P. 223. https://doi.org/10.1134/S1061934810030020)
  18. 18. Dankwardt A., Hock B., Simon R., Freitag D., Kettrup A. Determination of non-extractable triazine residues by enzyme immunoassay: Investigation of model compounds and soil fulvic and humic acids // Environ. Sci. Technol. 1996. V. 30 № 12. P. 3493. https://doi.org/10.1021/es9601604
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library